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ABSTRACT 

In the field of inverse scattering problems of electromagnetic imaging, there are many 

techniques that can be used to detect unknown objects. Generally these methods maintain a 

direct relationship between the precision of the target shape and the amount of time required to 

obtain the solution. However, it has been shown that hybridization, or a combination of 

techniques, can be used to obtain the shape reconstruction that is accurate and less expensive 

computationally. 

Previous research in the Computational Electromagnetics Group of Professor El-

Shenawee at the University of Arkansas has looked into the use of hybridization by combining 

the Level Set algorithm, a precise but slow shape reconstruction technique, with the Linear 

Sampling Method (LSM), a very fast technique. It was found that taking the result from the LSM 

and using it as the initial guess of the Level Set algorithm can enhance the computational 

expenses. The goal of this work is to implement a multiple frequency model of the LSM and to 

test it for two-dimensional metallic targets. 

The results show that a reasonably accurate reconstruction could be attained using the 

multiple frequency LSM technique to detect single and multiple targets. The results also show 

that some frequencies, not know a priori, can deteriorate the detection of the target. However, 

averaging the detected targets over a band of frequencies has shown a potential of more accurate 

results compared to the use of a single frequency. This work focused on the microwave band of 

frequency; however, the preliminary results will be extended to the terahertz band.
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I. INTRODUCTION 

The shape reconstruction using microwave imaging is one of the most current research 

topics in the field of electromagnetics. In particular, in reverse scattering problems, where an 

unknown object is reconstructed from the fields scattered when it is illuminated with microwave 

frequency signals, have been shown to be very useful for a wide variety of applications. Such 

applications may include advanced medical imaging, concealed or buried object detection and 

reconstruction, and security scanning. In all of these cases, the ability to retrieve an accurate 

reconstruction is absolutely vital. However, it is also important that the computational expense 

be kept low. This work focused on the microwave band of frequency; however, the preliminary 

results will be extended to the terahertz band. 

A. BACKGROUND RESEARCH 

There has been a significant amount of prior research in inverse scattering solution 

techniques at the University of Arkansas, specifically concerning a method using the Level Set 

algorithm [1]-[8]. Level Set is a very precise method that starts with an initial guess, or a large 

area in which the object being observed is estimated to exist. It then takes the field data scattered 

by the object across a range of frequencies and refines the shape and location of the object at 

each discrete frequency before moving to a higher one. The resulting image tends to be a very 

precise reconstruction of the object being illuminated. 

The significant drawback of the Level Set method is that the highly precise 

reconstructions come at the price of solution CPU time. This particular problem makes the Level 

Set method impractical for use in some applications in which accurate results are needed in real 

time. Thus, other methods were researched to determine a process that could be used for the 

reconstruction that is both precise and requires less time to obtain the image.  
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To this end, it was suggested to use a method of hybridization between two techniques 

[9], [10]. A faster but less precise technique could be used to approximate the size and location 

of the object in the calculation space. Then the Level Set algorithm could use the output of the 

faster algorithm as the initial guess for its refinement over the frequency range. The faster 

method chosen for this hybrid algorithm is the Linear Sampling Method (LSM), which has been 

shown to work well in hybridization with other techniques [11]. The LSM will be explained in 

greater detail in the following section. Using the LSM, it was found that an accurate 

reconstruction could be obtained for the case of a six-pointed star at a far lower CPU time than 

the Level Set algorithm alone. The results of the two stages of the hybridization can be seen in 

Figure 1.1.  

 

Fig. 1.1: The results of the previous hybridization research. (a) Results from LSM. (b) Results of 

Level Set using hybridization [9]. 

These reconstruction results can then be compared to the actual contour to find the 

percentage of error. The process used to describe the error divides the entire calculation space 

into a grid of 250 pixels width in both the x- and y-dimensions. The pixels of the image received 

by the image reconstruction algorithm are then compared to the pixels contained within the true 

object. The number of mismatched pixels between the two is then divided by the pixels of the 

true object and multiplied by 100 to get the percentage. The error from the hybridization images 
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shown in Figure 1, as well as the solution time and a comparison to the results of each method 

taken individually, are listed in Table 1. 

Table 1: Comparative CPU time and error of Level Set, LSM, and hybrid algorithms [9]. 

Algorithm CPU Time Error 
Level Set 9.5 hours 3% 

LSM 4 minutes 40% 
LSM/Level Set 36 minutes  4% 

 
These results indicate that there is indeed a very good improvement on the Level Set by 

first employing the LSM. Results comparable to the Level Set alone were obtained in a 

drastically reduced solution time. While these results are far preferable to the Level Set 

reconstruction, the LSM image taken was the most optimal contour taken at a single frequency.  

However, it is difficult to determine what single frequency would be best for the 

reconstruction, and it is highly dependent on the true shape and size of the object. Therefore, 

being able to obtain a reasonable image using a frequency sweep would be desirable, as it 

removes the uncertainty of selecting a single frequency. The goal of this research is to determine 

a proper multiple frequency procedure for the LSM for the use in optimum hybridization with 

Level Set in the future. 

B. THE LINEAR SAMPLING METHOD 

Basic LSM 

The LSM is an algorithm that seeks to solve the following far-field equation for the entire 

solution space [12]: 

 � �����	 
����
�
�
� � �����	 ���
�  (1)  

The �����	 
� term is the far field scattering of the object that is causing the scattering, 

���
� is the indicator function that describes the shape of the object in the calculation space, and 
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�����	 �� is the field created by a point source in vacuum and not dependent on the scattering of 

the object itself. The variable 
 is a vector defining the direction of propagation of the wave. 

LSM gathers the field data and attempts to solve for the indicator function ���
� for every point 

in the solution space using the following summation [12]: 

 ������ � � � ��
�������

�
�� !"��#��$#%&  (2)  

In this equation, ������ is the indicator function that is being solved. N is the number of 

points at which the field is measured. The '# terms are singular values achieved by the singular 

value decomposition of the field data as shown later in equations (5) and (6). The "� term is a 

simple multiple of the point source far field data �����	 �� as shown in equation (7).  ! is the 

inverse of one of the unitary matrices obtained from decomposing the measured field data in 

equation (5).  For LSM, this number is part of the following limiting equation for the algorithm 

[12]:  

 ( ) *+, (3) 

For this equation, , describes the radius of a circle that would surround the object being 

imaged. The + value is the wave number. Generally, a lower number of points is desired for 

reconstruction in order to be viable, so only the wave number is easily changed by adjusting the 

frequency at which the data is taken. For all of the simulations run for this research, the number 

of points is set constantly at 20. Thus, the upper limit of the frequency sweep is determined by 

equation (4). 

 - . $/
012 �

03445&678 9:
2  (4) 

The remaining terms of equation (2) are calculated by decomposing the measured field 

data, denoted in the following equation by ;< . 
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 ;< �  =>! (5) 

 =#	# � '# (6) 

The "� value is a factor of the point source scattering dependent on the number of points. 

 �"��? � $
�1���
?	 �� (7) 

Finally, the �� value is a regularization parameter that seeks to fulfill equation (7). This is 

achieved by solving for the zero values of the summation in equation (8) [12].  

 @;<���� A "�@� � B�������� (8) 

 -��� � � ��C<����
D�����E�

F� !"��F�$#%&  (9) 

The variable B is the noise of the system. In a practical case it can be found by using the 

system with no object present, but for the sake of the simulations it was obtained by adding a 

small amount of randomly generated values to the field data. However, this regularization does 

not drastically increase the capabilities of the LSM. A proof of concept for this matter will be 

shown in the results. Instead, the following assumption can be made for all cases: 

 �� � G3GH 5 �1
I  (10) 

The final output of equation (2) results in a value of ������ for every point in the field. 

The logarithmic value of this array can be plotted as a contour field from which a value can be 

selected to represent the boundary of the object being imaged. 
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Fig. 1.2: Example of the contour field resulting from LSM. 

Multiple Frequency LSM 

Currently, there are several multiple frequency models of the LSM used for various 

implementations. One way of obtaining the multiple field value for the object is to normalize the 

������ solved at each frequency and add them together [13]. 

 ��	JK � � @L�	M@�
NOPD@L�	M@��E

$QR%&  (11) 

Equation (9) outputs a grid of field values in the same manner as the normal LSM, and 

should provide a relatively reliable manner of getting an approximation of the image to input to 

the Level Set method. There have been other methods for multiple frequency reconstructions 

suggested [14],[15], but the one given here is the easiest to implement and has the fastest 

solution. The research being shown in this work seeks to determine the validity of such a method 

for the multiple frequency range. 
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II. APPROACH AND IMPLEMENTATION 

A. SIMULATION PROCEDURE 

Single Object: Six-pointed Star 

The multiple frequency LSM is used for two different scenarios. The first scenario is a 

single six-pointed star as shown in figure 2.1. The computational domain as a whole stretches 

from -0.4 to 0.4 on both the x- and y-axes and is divided into a grid of 250x250 solution points at 

which equation (2) solves for the indicator function. 

 

Fig. 2.1: Single object case: a six-pointed star 

The 2D image was placed in a Method of Moments forward solver to obtain the field data 

at each of the measurement points. As stated before, the current version of the algorithm utilizes 

20 equally spaced measurement angles. The measurements are then placed an LSM algorithm 

developed in MATLAB to solve for equation (2). The computer code can be found in Appendix 

A. 

The first set of simulations was performed at five frequencies ranging from 0.5 to 2.5 

GHz in steps of 0.5 GHz. However, as can be seen in the Results Section, the higher frequencies 

of this sweep caused deterioration in the LSM that prevented good results due to the restriction 

given by equation (3).  
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In order to keep the LSM within the proper frequency range for reliable reconstruction 

results, the sweep was changed to eleven frequencies from 0.5 to 1.5 GHz. The upper range for 

this sweep was selected using equation (4). If a circle of radius 0.25 is assumed to cover the 

entire object and 20 solution points are used, then the maximum frequency that can be utilized is 

1.91 GHz.  

This new sweep was used to obtain image reconstructions at each individual frequency as 

well as for the multiple frequency summation in order to compare the individual frequencies to 

the multiple frequency average. A separate program was then used to find the best fit contour 

from each of these fields as well as the percent error of that contour. The equation used to 

calculate the error is the same as was used in the single-frequency hybridization and is described 

in the following equation: 

 STUUVU � 8W982X/YTZ�#W[T?9�\TX]TT^�W82LTZ�2^Z�2/X_2?
#W[T?9�W^�2/X_2?�V\`T/X 5 HGGS (12) 

This equation was implemented with every single contour of the field and compared to 

each other. The contour with the least error was saved as the best-fit reconstruction. This process 

was performed both using the �� parameterization and by using a constant �� of 0.01. The 

results of both of these reconstructions were shown to give roughly the same level of accuracy, 

as will be shown in the Results Section, but using a constant �� greatly reduced the simulation 

time. 

Multiple Objects: Ellipse Pair 

The second scenario researched using LSM was that of a pair of identical ellipses spaced 

an equal distance from the origin, as can be seen in figure 2.2. The solution space for this 

scenario was decreased to -0.12 to 0.12 on both the x and y axes to refine the solution around the 

objects. 
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Fig. 2.2: Multiple objects case: a pair of ellipses 

In this case the area containing the scattering objects can be placed within a circle of an 

approximate radius of 0.09 meters. Thus the maximum frequency available for the sweep would 

be 5.31 GHz. Therefore, the sweep chosen for this object’s reconstruction was eleven points 

from 3.0 to 5.0 GHz. The same method for analyzing the first scenario was used for the second: 

the best fit contour was found for each frequency as well as the multiple frequency summation 

and then compared. Since the first scenario showed that �� parameterization was not necessary 

for an accurate reconstruction, only a constant �� of 0.01 was used for the second scenario. 

Threshold Value Comparison 

After comparing the best-fit contours of the two scenarios observed in this research, it 

was determined that simply looking at the best contour is not completely practical for a realistic 

scenario, since knowing the best contour is not possible without knowing the true shape of the 

object in the first place. Therefore, a more fair comparison between the values at each distinct 

frequency and the multiple frequency reconstruction should be drawn from selecting a single 

contour value to use for all frequencies. Thus for the three sets of results (first scenario with �� 
solved, first scenario with �� constant, and second scenario with �� constant) the value of the 
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best fit contours was determined in order to establish a relative range of values that could be used 

for the comparisons.  

From this comparison, several threshold values were chosen for the fields of each set of 

results. The error calculation code was adjusted to select the contour closest to that value for 

each frequency and the multiple frequency model, and calculate only the error of those contours. 

This would create a more fair comparison and should also show a reasonable threshold to use for 

future unknown images.  

B. RESULTS 

First Simulation Example 

Figure 2.3 shows the results of the very first simulation set performed on the single object 

field data. The locator function field was calculated for five different frequencies ranging from 

0.5 GHz to 2.5 GHz. 

 

Fig. 2.3: First set of field reconstructions. 
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When observing the field reconstructions, there should be a trend from high values (red) 

in empty space to low values (blue) where the object is located. It can be seen here that for 0.5, 

1.0, and 1.5 GHz the reconstruction follows the shape reasonably well, but for higher frequencies 

LSM fails to give good results because of the restriction given in equation (3) as described in the 

Procedures Section. Thus, a new sweep of eleven points from 0.5 to 1.5 GHz was performed for 

the same scenario.  

Single Object Best-Fit Reconstructions 

Figure 2.4 shows the fields reconstructed at each frequency and the multiple frequency 

model when �� is solved, while figure 2.5 shows the best fit contours for each of these 

reconstructions. Figures 2.6 and 2.7 similarly show the field reconstructions and best fit contours 

when �� is kept constant at 636�1 I:  according to equation (10), respectively. In the field 

reconstruction images, the true object is shown by the black outline. 

 

Fig. 2.4: Single object reconstruction at each frequency with α solved. 
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Fig. 2.5: Single object best-fit contours selected at each frequency with α solved. 

 

Fig. 2.6: Single object reconstruction at each frequency with α constant.  
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Fig. 2.7: Single object best-fit contours selected at each frequency with α constant. 

Using equation (12), it is possible to obtain a percent error for each of the best fit 

contours for both cases of the first scenario, as shown in figure 2.8. 

 

Fig. 2.8: Percent error graph for single object reconstruction. 

In both cases the multiple frequency model, denoted by the text “MF” in the associated 

images, gives a reasonable reconstruction for the best fit model. One thing to note about the 

reconstruction is that at certain frequencies such as 0.8, 1.2, and 1.3 GHz, the best-fit contour 
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selected is not a viable reconstruction. This is likely due to the fact that the LSM fails when the 

frequency is at one of the object’s eigenvalues, which is heavily dependent on the shape and size 

of the object itself. Other frequencies such as 1.0 and 1.1 GHz gave very reliable reconstructions. 

However the goal of the LSM in hybridization is not to get a perfect reconstruction, but to obtain 

a reasonable first guess for the more rigorous Level Set algorithm. For such a purpose, these 

multiple frequency models give viable results. 

It should also be noted that the differences between solving for �� or leaving it constant 

are fairly negligible, especially when compared across a range of frequencies. The average error 

across the frequency sweep is essentially the same in both cases, with the difference in the 

multiple frequency reconstruction being similarly negligible. However, the solution time when 

assuming �� to be constant is far less than solving for ��. Thus, for the multiple object 

reconstruction only the constant �� case will be considered. 

 

Fig. 2.9: Second scenario reconstruction at each frequency with α constant. 
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Multiple Object Best-Fit Reconstruction 

Figures 2.9 and 2.10 show the field reconstruction and best-fit contours of the scenario 

involving the two ellipses. Figure 2.11 shows the percent error for each of the best fit contours. 

 

Fig. 2.10: Multiple object best-fit contours selected at each frequency with α constant. 

 

 

Fig. 2.11: Percent error graph for the multiple object reconstruction. 
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As in the scenario with the six-pointed star, the multiple frequency LSM produced a 

fairly reasonable contour of the two ellipses that. While the best fit contour was not as good as an 

average contour taken from the best fit reconstructions, it does prevent the possibility of 

accidentally selecting a poor reconstruction such as 3.4 or 4.2 GHz. This makes the multiple 

frequency technique a viable method for obtaining an initial guess for hybridization. 

The Same Threshold Value Comparison 

However, in a realistic case it is not possible to compare the error of one best-fit contour 

to another, since the true shape of the object is required to determine the best-fit contours, and 

the purpose of the research is to find the unknown object in the first place. Thus, a more fair 

comparison must be drawn by comparing all of the fields at the same values. Table 2 shows the 

different thresholds that were originally selected by the error-calculation code to outline the best 

fit contours. 

Table 2: Best-fit contours and their thresholds 

 star (solved alpha) star (constant alpha) ellipses 
Frequency contour value contour value contour value 
0.5 GHz 2 -1.236 5 -1.007 9 -0.699 
0.6 GHz 1 -1.139 4 -0.900 9 -0.667 
0.7 GHz 7 -0.862 10 -0.559 1 -0.967 
0.8 GHz 5 -1.040 10 -0.633 11 -0.610 
0.9 GHz 10 -0.919 10 -0.724 10 -0.682 
1.0 GHz 8 -0.992 13 -0.558 12 -0.591 
1.1 GHz 11 -0.882 15 -0.512 11 -0.645 
1.2 GHz 5 -1.182 9 -0.781 23 -0.079 
1.3 GHz 6 -1.138 15 -0.482 30 0.157 
1.4 GHz 9 -1.031 13 -0.607 16 -0.443 
1.5 GHz 11 -0.935 15 -0.448 14 -0.587 
Average 6.82 -1.032 10.82 -0.656 13.27 -0.528 
MF 12 -0.618 15 -0.644 17 -0.389 
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The contour number is simply the point on the logarithmic scale at which the selected 

threshold value occurs. From this table, a threshold range was selected to observe how well the 

MF reconstruction behaves at a certain value in comparison to the individual frequencies at that 

value. The thresholds selected were -0.1, -0.3, -0.5, and -0.7. These thresholds were applied to all 

three sets of field values to obtain a set of contours. Only the numerical error results and the 

multiple frequency comparison will be shown here. In each of the following images, “Th” 

indicates the threshold value for the data. The full sets of contours can be seen in Appendix B. 

 

Fig. 2.12: Single object comparison of multiple frequency reconstructions at each threshold value 

when solving for ��. “Th” is the threshold value. 
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Fig. 2.13: Error comparison of single object at each threshold value when solving for ��. 

 

Fig. 2.14: Single object comparison of multiple frequency reconstructions at each threshold value 

when using constant ��. 
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Fig. 2.15: Error comparison of single object at each threshold value when using constant ��. 

 

Fig. 2.16: Multiple object comparison of multiple frequency reconstructions at each threshold 

value when using constant ��. 
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Fig. 2.17: Error comparison of multiple objects at each threshold value when using constant �� 
In all three of the cases observed, the multiple frequency model continued to have a 

reasonable reconstruction compared to the individual frequencies at the same threshold value. In 

particular, it seems that threshold values between -0.3 and -0.5 would give reliable 

reconstructions for all cases. However, these values cannot be assumed for cases not mentioned 

here until more research has been conducted.  

Note that in these cases there are error values greater than 100%. This is because the 

number of mismatched pixels is compared to the number of pixels in the actual object rather than 

the solution space as a whole. Thus, it is possible to have more mismatched pixels than exist in 

the actual object. This could be avoided by using the total pixels in the solution space instead of 

the pixels in the object, but the percentage comparisons are still fair since all percentages are 

drawn from the same method. 
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III. CONCLUSIONS AND FUTURE RESEARCH 

This research has shown that there is a simple yet reliable method for taking a multiple 

frequency reconstruction of the LSM. While this method does not necessarily give a better 

reconstruction than some specific frequencies, it is a reliable method of avoiding the frequencies 

in a sweep that provide very poor reconstructions. This multiple frequency LSM works equally 

well for a single complicated object or multiple objects. The true test of the validity of the 

method will have to come from testing the hybridization method with the multiple frequency 

output of the algorithm. 

Other future research will involve attempting to expand the multiple frequency method to 

a wider number of cases. First of all, it would be useful to determine that the LSM still works for 

asymmetrical cases. Thus, research will be conducted into reconstruction of objects with less 

regular distribution or objects not centered at the origin of the xy-plane. 

Additionally, the current version of the LSM is only used for perfect electric conductor 

objects, and LSM is not dependent on the permittivity of the object, so it is important to see if a 

reconstruction can be gathered from objects of lower permittivity. Thus, in order to perform any 

reconstruction, a method of solving for the scattered fields of 2D dielectric objects must first be 

determined. Then the LSM will be utilized to test if reconstruction results can be obtained in 

short CPU time. Finally, for practical applications it will be necessary to upgrade the LSM 

algorithm to handle 3D reconstructions so that multiple frequency and hybridization with the 

Level Set algorithm can be tested. 
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APPENDIX A: MATLAB CODE 
 
Linear Sampling Method code 
 
close all 
clc 
clear 
 
% Code for the LSM method for 2D PEC targets. The formulation is based on  
%Chapter 1 in "F. Cakoni, D. Colton, P. Monk, The Linear Sampling Method in  
%Inverse Electromagnetic Scattering, Society for Industrial and Applied  
%Mathematics, 2011" 
 
% Set number of frequencies 
fs=11; 
 
% Set frequency values 
f=[0.5e9 0.6e9 0.7e9 0.8e9 0.9e9 1e9 1.1e9 1.2e9 1.3e9 1.4e9 1.5e9]; 
 
% Set scattered field file names 
fieldfile=['m_lsm_f_low_1.dat '; 'm_lsm_f_low_2.dat '; 'm_lsm_f_low_3.dat '; 
'm_lsm_f_low_4.dat '; 'm_lsm_f_low_5.dat '; 'm_lsm_f_low_6.dat '; 'm_lsm_f_low_7.dat 
'; 'm_lsm_f_low_8.dat '; 'm_lsm_f_low_9.dat '; 'm_lsm_f_low_10.dat'; 
'm_lsm_f_low_11.dat']; 
 
% Set scattered field with noise file names 
fieldsfile=['mn_lsm_f_low_1.dat '; 'mn_lsm_f_low_2.dat '; 'mn_lsm_f_low_3.dat '; 
'mn_lsm_f_low_4.dat '; 'mn_lsm_f_low_5.dat '; 'mn_lsm_f_low_6.dat '; 
'mn_lsm_f_low_7.dat '; 'mn_lsm_f_low_8.dat '; 'mn_lsm_f_low_9.dat '; 
'mn_lsm_f_low_10.dat'; 'mn_lsm_f_low_11.dat']; 
 
% k: is the propagation factor 
k= (2*pi/3e8)*f 
 
% nxy: is the number of pixels in the x and y direction. The imaging domain 
%will be composed of nxy*nxy pixels 
nxy=250; 
 
% N: is the number of incident and receiver directions 
N=20; 
 
% Initiate field arrays 
% GMF: Multiple frequency average values of the GG function 
% amf: Multiple frequency average values of solved alpha 
GMF=zeros(nxy,nxy); 
amf=zeros(nxy,nxy); 
 
tic 
for i=1:fs 
     
    %m: is the file with the scattered field calculated using the MOM code of 
    %Reza. The file is formated such that the real part is in the 1st column 
    %and the imaginery part is in the 2nd column. The scattered fields are 
    %arranged into a matrix "u" where the rows represent the different receiver 
    %angles and the column represent the different incident angles 
 
    m=load(fieldfile(i,:)); 
    mm=m(:,1)-j*m(:,2); 
    mm=mm*j; 
    u=reshape(mm,N,N); 
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    % m: is the file with the scattered field+NOISE calculated using the MOM code of 
    %Reza. The file is formated such that the real part is in the 1st column 
    %and the imaginery part is in the 2nd column.  The scattered fields are 
    %arranged into a matrix "As" where the rows represent the different receiver 
    %angles and the column represent the different incident angles 
 
    m=load(fieldsfile(i,:)); 
    mm=m(:,1)-j*m(:,2); 
    mm=mm*j; 
    As=reshape(mm,N,N); 
 
    % s is a factor used in the regularization. It is calculated by taking the 
    %norm of the difference between the scattered field+Noise and the exact 
    %scattered field. In real measurements s can be estimated by measuring the 
    %level of noise 
     
    s=norm(As-u); 
 
    % x&y: limits of the imaging domain 
    x=linspace(-0.4,0.4,nxy); 
    y=linspace(-0.4,0.4,nxy); 
     
    % xa: receiver angles 
    % h: step in receiver angles 
    xa(1:N,1)=0:2*pi/N:2*pi-2*pi/N; 
    h=2*pi/N; 
 
    options = optimset('TolX',1e-14); 
    % GG: is the LSM unknown that we solve for at each pixel in the domain 
    % a: is the regularization parameter calculated at each pixel in the domain  
    % a: can also indicate to the shape of the object. 
    GG=zeros(nxy,nxy); 
    a=zeros(nxy,nxy); 
 
    % The following is the main for loop that scans each pixel in the domain 
    %calculating "GG" an"d a" at each pixel. 
 
    frequency=i 
    for ii=1:nxy 
        ii 
        for jj=1:nxy 
            % is the far field pattern due to a point source located at the 
            %auxiliary point x(jj),y(ii). 
            pinf=exp(j*pi/4)/sqrt(8*pi*k(i))*exp(-
j*k(i)*(cos(xa)*x(jj)+sin(xa)*y(ii))); 
            bz=pinf/h; 
         
            [U,S,V]=svd(As); 
            % "fzero" is used to get the optimum regularization parameter by 
            %solving the quation in "fun_a". A constant can be used to equal effect. 
             
     %% a(ii,jj)=fzero(@(a) fun_a(a,S,s,N,U'*bz),[0.001 1000],options); 
            a(ii,jj)=.01*2*pi/k(i); 
         
            ub=U'*bz; 
            for ig=1:N 
                
GG(ii,jj)=GG(ii,jj)+((S(ig,ig)/(a(ii,jj)+S(ig,ig)^2))^2)*abs(ub(ig))*abs(ub(ig)); 
            end 
        end 
    end 
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    % The multiple frequency array takes in the normalized value of each field 
    %and sums them together. 
    GGS(i,:,:)=GG; 
    GMF=GMF+GG/max(max(abs(GG))); 
    amf=amf+a/max(max(a)); 
 
 
    % A plot of the contours of GG indicating the shape of the object at each 
frequency 
     
    figure 
    CC=contour(x,y,log10(GG),50); 
    axis image 
    hold on 
    kk=load('contours.txt'); 
    plot(kk(:,1),kk(:,2),'k-','linewidth',2) 
    axis([-0.4 0.4 -0.4 0.4]) 
    set(gca,'fontsize',14) 
    set(gcf,'color',[1 1 1]) 
 
end 
toc 
 
% A plot of the contours of GMF indicating the shape of the object averaged 
%across the frequency sweep 
 
figure 
CC=contour(x,y,log10(GMF),50); 
axis image 
hold on 
kk=load('contours.txt'); 
plot(kk(:,1),kk(:,2),'k-','linewidth',2) 
axis([-0.4 0.4 -0.4 0.4]) 
set(gca,'fontsize',14) 
set(gcf,'color',[1 1 1]) 
 
save ig_star_f_2 
 

Alpha Parameterization 
 
% The equation from which the regularization parameter "a" is calculated. 
% "a" is calculated by finding the POSITIVE zero of "y" 
function y=fun_a(a,S,s,N,ub) 
 
y=0; 
for i=1:N 
    y=y+(a^2-s^2*S(i,i)^2)/((S(i,i)^2+a)^2)*abs(ub(i))*abs(ub(i)); 
end 
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Percent Error Calculator 
 
% function CC_opt=ig_opt_CC(CC,x,y,N) 
 
close all 
clc 
clear; 
 
load ig_star_f; 
G2=zeros(nxy,nxy); 
G2=GMF; 
CC=contour(x,y,log10(G2),50); 
 
I=find(CC(2,:)>1); 
 
DD=CC; 
similar=zeros(50,length(CC)); 
for i=1:50 
    levels=DD(1,I); 
    in=DD(1,2); 
    if(i==1) 
        I1=find(DD(1,:)==DD(1,1)); 
        similar(i,1:length(I1))=I1; 
        lens(i)=length(find(DD(1,:)==DD(1,1))); 
        DD(2,I1)=0; 
        ls(i)=DD(1,1); 
   else 
        I2=find(DD(2,:)>1); 
        I22=find(DD(1,:)==DD(1,I2(1))); 
        similar(i,1:length(I22))=I22; 
        lens(i)=length(find(DD(1,:)==DD(1,I2(1)))); 
        DD(2,I22)=0; 
        ls(i)=DD(1,I2(1)); 
    end 
     
end 
 
 
inb=zeros(nxy*nxy,1); 
inc=zeros(length(x),length(x)); 
kk=load('contours.txt'); 
 
for i=1:1 
    % x=linspace(-0.3,0.3,nxy); 
    % y=linspace(-0.3,0.3,nxy); 
     
    [X,Y]=meshgrid(x,y); 
     
    IN = inpolygon(X,Y,kk(1+(i-1)*500:i*500,1),kk(1+(i-1)*500:i*500,2)); 
     
    ina=reshape(IN,length(x)*length(x),1); 
     
    I=find(ina); 
     
    inb=zeros(nxy*nxy,1); 
    inb(I)=1; 
    inc=inc+reshape(inb,length(x),length(x)); 
    figure(1) 
    plot(kk(1+(i-1)*500:i*500,1),kk(1+(i-1)*500:i*500,2),'linewidth',3) 
    hold on 
end 
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axis image 
axis([-0.3 0.3 -0.3 0.3]) 
set(gcf,'color',[1 1 1]) 
set(gca,'fontsize',14) 
 
[III,JJJ]=find(inc>1); 
if(length(III)>0) 
    inc(III,JJJ)=1; 
end 
figure 
pcolor(x,y,inc) 
axis image 
shading flat 
set(gcf,'color',[1 1 1]) 
set(gca,'fontsize',14) 
 
incc=zeros(length(x),length(x),100); 
[A,B]=size(inc); 
 
loc2=[0 0]; 
for i=1:50 
    i 
    for j=1:lens(i) 
        similar(i,j); 
        LL=CC(2,similar(i,j)); 
        xv=CC(1,similar(i,j)+1:similar(i,j)+LL); 
        yv=CC(2,similar(i,j)+1:similar(i,j)+LL); 
        %         plot(xv,yv) 
        %         hold on 
        % 
        IN = inpolygon(X,Y,xv,yv); 
         
        ina=reshape(IN,length(x)*length(x),1); 
        inb=zeros(length(ina),1); 
        I=find(ina); 
         
        inb(I)=1; 
        incc(:,:,i)=incc(:,:,i)+reshape(inb,length(x),length(x)); 
        clear III JJJ 
        [III,JJJ]=find(incc(:,:,i)>1); 
        if(length(III)>0) 
            incc(III,JJJ,i)=1; 
             
            [al,bl]=size(loc2); 
            [ai,bi]=size(III); 
            loc2(al+1:al+ai,1)=III; 
            loc2(al+1:al+ai,1)=JJJ; 
        end 
    end 
    min_err(i)=sum(sum(abs(incc(:,:,i)-inc))); 
end 
 
min_err=min_err/sum(sum(inc))*100; 
 
figure 
contour(x,y,log10(G2),50); 
axis image 
hold on 
% kk=load('contours.txt'); 
% plot(kk(:,1),kk(:,2),'k-','linewidth',2) 
axis([-0.4 0.4 -0.4 0.4]) 
set(gca,'fontsize',14) 
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set(gcf,'color',[1 1 1]) 
 
[mmm,I_min]=min(min_err); 
figure 
pcolor(x,y,-incc(:,:,I_min)) 
axis image 
shading flat 
set(gcf,'color',[1 1 1]) 
set(gca,'fontsize',14) 
 
display(['Error of best fitting contour is=' num2str(mmm) '%']) 
display(['Value of minimum threshold is ' num2str(ls(I_min)) ' contour number ' 
num2str(I_min)]) 
 
save igsd_star_f 
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APPENDIX B: THRESHOLD SWEEP CONTOUR SELECTIONS 

First scenario: six-pointed star, α solved 

 

Fig. B.1: Single object contours when solving for �� with threshold of -0.1. 

 

Fig. B.2: Single object contours when solving for �� with threshold of -0.3. 
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Fig. B.3: Single object contours when solving for �� with threshold of -0.5. 

 

Fig. B.4: Single object contours when solving for �� with threshold of -0.7. 
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First scenario: six-pointed star, α constant 

 

Fig. B.5: Single object contours when using constant �� with threshold of -0.1. 

 

Fig. B.6: Single object contours when using constant �� with threshold of -0.3. 
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Fig. B.7: Single object contours when using constant �� with threshold of -0.5. 

 

Fig. B.8: Single object contours when using constant �� with threshold of -0.7. 
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Second scenario: two ellipses, α constant 

 

Fig. B.9: Multiple object contours when using constant �� with threshold of -0.1. 

 

Fig. B.10: Multiple object contours when using constant �� with threshold of -0.3. 
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Fig. B.11: Second scenario contours when using constant �� with threshold of -0.5. 

 

Fig. B.12: Second scenario contours when using constant �� with threshold of -0.7. 
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