University of Arkansas, Fayetteville
ScholarWorks @ UARK

Electrical Engineering Undergraduate Honors

Theses

Electrical Engineering

5-2011

Reducing energy usage of NULL Convention
Logic circuits using NULL Cycle Reduction
combined with supply voltage scaling

Brett Sparkman
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/eleguht

Recommended Citation

Sparkman, Brett, "Reducing energy usage of NULL Convention Logic circuits using NULL Cycle Reduction combined with supply
voltage scaling” (2011). Electrical Engineering Undergraduate Honors Theses. 19.
http://scholarworks.uark.edu/eleguht/19

This Thesis is brought to you for free and open access by the Electrical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in
Electrical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact

scholar@uark.edu.

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Feleguht%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleg?utm_source=scholarworks.uark.edu%2Feleguht%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht?utm_source=scholarworks.uark.edu%2Feleguht%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/eleguht/19?utm_source=scholarworks.uark.edu%2Feleguht%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

REDUCING ENERGY USAGE OF NULL CONVENTION

LOGIC CIRCUITS USING NULL CYCLE REDUCTION

COMBINED WITH SUPPLY VOLTAGE SCALING

REDUCING ENERGY USAGE OF NULL CONVENTION
LOGIC CIRCUITS USING NULL CYCLE REDUCTION

COMBINED WITH SUPPLY VOLTAGE SCALING

A thesis submitted to the Honors College in partial
fulfillment of the requirements for the degree of
Honors Bachelors of Science
in Electrical Engineering

Brett Sparkman

May 2011
University of Arkansas

ABSTRACT

The NULL Cycle Reduction (NCR) technique can be used to improve the performance of
a NULL Convention Logic (NCL) circuit at the expense of power and area. However, by
decreasing the supply voltage of certain components, the power of the NCR circuit can be
reduced. Since NCR has increased performance, it could be possible to decrease the power while
maintaining the original performance of the circuit.

To verify this, the NCR circuit will be implemented using a 4-bit by 4-bit dual-rail
multiplier as the test circuit. This circuit will be simulated in ModelSim to ensure functionality,
synthesized into a Verilog netlist using Leonardo, and imported into Cadence to perform
transistor-level simulations for power calculations. The supply voltage of the duplicated circuits
will be decreased until the performance matches the design of the original multiplier, resulting in

overall lower energy usage.

This thesis is approved for recommendation to the Honors College.

Thesis Director:

Ja LY

Dr. Scott C. Smith

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when needed for
research and/or scholarship.

Agreed B MAW

Refused

ACKNOWLEDGMENTS

I thank Dr. Scott Smith, my thesis advisor, for the project topic and opportunity to
conduct this undergraduate research. His continued assistance with verification and optimistic
outlook truly made this an enjoyable experience.

In addition, I thank Liang Zhou, a graduate student, for his continued help with all of the
software used during the project. This included synthesizing VHDL files in Leonardo, importing
the files into Cadence, and running simulations in Cadence using UltraSim.

I would also like to thank my fiancée, Alexandra Gammill, for the continued support

throughout this project and my mother, Michele Walker, for the proofreading assistance.

TABLE OF CONTENTS

1. Introduction 1
L1 PrODBIEIM ...ttt ettt ettt st e s e s et st e besn e ebe st e e as s e s ebesae e 1
L2 “TTHESES: S OAETCINR uuicswwsssmnsmmsnsossssssiosma s nsss a5 S50 ahiess sasns sy sassxas s s Sessom s s 51 0r8o0 1
1.3 APPTOACK. ... eeeiiteeiee ettt sttt et e e e sae et e s ae s e e s e s s e s et eaesaeenesrnesabebaeeneensesanebens 1
1.4 Potential IMPACEcccceveeriirereniintiriistesteseeieeestesteseeeaeesaessaesseassestessessesssesssessaessessesssensens 2

2. Background 3
2.1 POWET REAUCLION.....ceocviieiieiiiieeieteseeceesiesieseeesee st e sieesaeessessessansneessesseessessessnesssesnsessasssennes 3

| 2.2 WULL Convention Logic (NCL) Oerview [1]. ot 3
2.2.1 Delay-INSENSITIVILY c..eeveereeriirierieiirereetesiesreesseeesssressesstessesssesseessessasssessessseesseessessesaes 4
2.2.2 LOGIC GALES .cuveuveneeririeeerereienteissestesetesessesnesessesseseesaesassossesessessesesessssensesessessensesassessencas 5
2023 COMPIEIBIIERS ..o iiinnanrmsnssitennmenmmansiissansnsmnessnssssemensemsannsenensmsnsinkonssmnsmsas tsansennansas aiidananens 6
2.2.4. OBSEIVADILILY ...cuvervireieiriiisieeserestessestesaeestestesessessassaessestanessessessessassnessessassasssesessens 7

2.3 NULL Cycle Reduetion (NCRY OVEEVIEW [1] amsmminussmssnsanssassasssmsnsasssssss s 7

3. Approach and Implementation 10

3.1 VHDL With MOGEISIMeoveuiiiiirieieirenisesiesieestesaessesiesssesseseasssssassesssssessessessessessaesensas 10
3. 1.1 ModiFications 10 VI cumnemsissssiinsansesss isinennansiiis dhassomnss 5 it smens k556 5 S s a5 AR 10
3.1.2 Simulating the Original DeSIZIcoeverueierirnirinienieinere ettt saenes 10
3. 1.3 SIrnulatinig thie WICTR T SaT 0T amnsnems s nsions iesinsosis s eusorsionsses5s orussn S sss s 11

3.2 Verilog Synthesis in Leonardocc.ccoiecuereeviireirieeierieesieresesssssessesseseesessessesssessessesessesns 11
3.2.1 Importing VHDLocooiiiiiiiicieicctnieeet et sies e ses st sesstssse s esrestesesssaneassasnsessessaseons 12
3.2.2 RUNNING SOIIPLS . cicrueraremnsssrsnissmmmnerarsasssnsonssssnssnsssansnrassssssensrassassarsssesnssamsassansssnssstssnssnn 12

vi

4. Conclusions
References

A. Single Multiplier VHDL Files

B. Verilog File

C. Additional-Multiplier VHDL Files

B3 A OIS ORI o s s 55 IR AR 8 A 555 o5 G AR R S
3.3.1 IMPOTtING VEIIlOE ...ccuvvuiriiiiiiiteierieieteine ettt st eve e sne s s e saesae st e sesaeone
3.3.2 Generating COntIOLLETc..vivuirieiiireiieiereeseete st et s e e e e ssesseesaeseesaassaessnenns
3.3.3 POWET SIMUIALIONSeeeeririireieririiriieeeeesrerreseesseeeeressee st etessessessessessessessessesessnensenssnsens
3.3.4 Two-Multiplier Circuit MOdifiCation..........ccoveuereereririirieneeieerierseeeesseesensseseseenes

3.3.5 Pour-Multiplier Circull ModifICation ...cmwwmmasmmmsomnasmsm s o ommssssmsmis

ALl deMUX. VIt et s e e e s e er e e s e e b e be s s ense s aernenseenbeen
Bl ACTNR T NI cournssiicunsns nssnnnosnsomsioun eninssi doisssi s S 4has 2005456800 455 455940 S35 L B 5 55
A3 multdxd 1Stage.VRdccoooiiiiiiiiieieteiecete ettt a et e a e nnen
A4 MUItdXA INC.VIA ..ottt e r et eb e e re b e sae s b e rne s e saeene
AuS TR TEILNI ciisssamimm thianmsinissnmamensnsisrsmsesmsonsimmmsmsnmisssssssnssasemoneanes sanentnmserasssansnsanensresunes
AL SELECE.VII ...t e ea e e a et b s ene s aeeaes

AT T TAREL Tl O s smsnsesommsn mmnson s 550,55 SRR e AR i A i

C.1 Two-Multiplier Design: mult4x4 15tage2.vhd........ccoeereveeeievenrecieicesreeeeeeeieeeeese s

C.2 Four-Multiplier Design: mult4x4 1staged.vhd........ccceeeeiecreieeririeieeenrerenieierenseseseseneens

vii

20

22

24

24

25

25

33

35

35

37

52

57

LIST OF FIGURES

Figure 1. Thmn threshold gate. [1] ..cc.coiiieeiieiiiecee ettt snenes 6
Fioure 2. WCR. ATCHITEIIIII. 1uumvumsamusmssunssnnsnssnssins oo 5o o s smsssms isisss s e oo s s 8
Figure 3. One 4-bit by 4-bit MUIIPLET......cocveererierrirreniieinieeeenieeeeesreeseee e sseere e see s enessenees 11
Figure 4. TWO-MUItIPLIEr AESIN. ...c.cocveuiriiriiieieieietetesiestesiesre e seessestesseseeseseessesseenesmneseesnensenes 16
Figute 5. BOOt-OiltTIeR clBIETN .nmmes s cmsons s 5 8 nsanesnsis 55450545 0885 s 8565 6555355 SRS 7 S35 18
LIST OF TABLES
Table 1. One-raalGPIEr GESTEN TEBUIES. :urs.misiconomnsntssss s snneemsenss 545555 85 msmss 5556546555755 SIETGIFETS 15
Table 2. Two-multiplier desig@n rESUILS.cuevirruiiiirieecieree et esvesasesaeas 17
Tdble 3. Paur-thaliiplier Qe om Temile. s o ousnn s sos oo 19

viil

1. INTRODUCTION

1.1 Problem

As circuits are continually produced with increasing numbers of transistors and switching
frequencies, circuit power also increases. Although these improvements can drastically raise the
performance of circuits, they also have a downside: the circuits consume larger amounts of
power. This increase in power consumption has several downsides: the circuits will heat up more
due to higher power dissipation, the circuits will last shorter amounts of time on a single battery

charge, and the circuits have a higher cost of operation for the same amount of time.

1.2 Thesis Statement

The goal of this research is to investigate applying the NULL Cycle Reduction (NCR)
technique to a circuit and reducing the supply voltage of the duplicated portion in an effort to

reduce the overall energy usage of the circuit while maintaining equivalent performance.

1.3 Approach

In order to determine if reducing the supply voltage of a circuit can reduce its power, a
series of simulations was performed. First, a simulation of the VHDL design was performed in
ModelSim to ensure that the circuit performed as desired. Next, the files were synthesized using
Leonardo in order to generate a Verilog netlist, which was then imported into cadence. The final
steps involved running numerous transistor-level simulations in Cadence to determine the effects

of reducing the supply voltage in terms of power and performance.

1.4 Potential Impact

This research has the potential to impact power reduction methods used by Dr. Smith and
his graduate students. If a standard circuit performs as desired but consumes too much power,

this technique could be applied to lower the power of the circuit while maintaining the

performance.

2. BACKGROUND

2.1 Power Reduction

The power of a circuit is given by the equation:
P = C Vipf+X tscVpplpeak + Voplieakage
where « is the activity factor, C; is the capacitance of the circuit, Vpp is the supply voltage, f is
the clock frequency, ts is the short-circuit time, Ipeq, is the short-circuit current spike
amplitude, and ljeqqg. is the leakage current of the transistors. Since Vpp is present in all three
terms, a large reduction in power consumption can be achieved by reducing the supply voltage.
However, reducing the voltage can have a negative impact on the circuit, decreasing the
performance and potentially causing the circuit to perform incorrectly. This resulting dilemma is

one of the large tradeoffs in digital design: performance vs. power.

2.2 NULL Convention Logic (NCL) Overview [1]

The following two sections are the work of Dr. Scott C. Smith. NCL offers a self-timed
logic paradigm where control is inherent with each datum. NCL follows the so-called ‘‘weak
conditions’’ of Seitz’s delay-insensitive signaling scheme [2]. As with other self-timed logic
methods discussed herein, the NCL paradigm assumes that forks in wires are isochronic [3]. The
origins of various aspects of the paradigm, including the NULL (or spacer) logic state from
which NCL derives its name, can be traced back to Muller’s work on speed-independent circuits

in the 1950s and 1960s [4].

2.2.1 Delay-insensitivity

NCL uses symbolic completeness of expression [5] to achieve delay-insensitive behavior.
A symbolically complete expression is defined as an expression that only depends on the
relationships of the symbols present in the expression without a reference to their time of
evaluation. In particular, dual-rail signals or other Mutually Exclusive Assertion Groups
(MEAGS) can be used to incorporate data and control information into one mixed signal path to
eliminate time reference [6]. A dual-rail signal, D, consists of two wires, D and D', which may
assume any value from the set {DATAO, DATAI, NULL}. The DATAO state (D’ = 1, D' = 0)
corresponds to a Boolean logic 0, the DATALI state (D’ = 0, D’ = 1) corresponds to a Boolean
logic 1, and the NULL state (D’ = 0, D’ = 0) corresponds to the empty set meaning that the value
of D is not yet available. The two rails are mutually exclusive so that both rails can never be
asserted simultaneously; this state is defined as an illegal state. Dual-rail signals are space
optimal 1-out-of-N delay-insensitive codes requiring two wires per bit. Other higher order
MEAGs are not wire count optimal; however, they can be more power efficient due to the
decreased number of transitions per cycle.

Most multi-rail delay-insensitive systems [2,5,7], including NCL, have at least two
register stages, one at both the input and at the output. Two adjacent register stages interact
through their request and acknowledge lines, K; and K,, respectively, to prevent the current
DATA wavefront from overwriting the previous DATA wavefront, by ensuring that the two

DATA wavefronts are always separated by a NULL wavefront.

2.2.2 Logic gates

NCL, like [3], differs from the other delay-insensitive paradigms [2,7] in that these other
paradigms only utilize one type of state-holding gate, the C-element [4]. A C-element behaves as
follows: when all inputs assume the same value, then the output assumes this value; otherwise
the output does not change. On the other hand, all NCL gates are state-holding. Thus, NCL
optimization methods can be considered as a subclass of the techniques for developing delay-
insensitive circuits using a pre-defined set of more complex components, with built-in Aysteresis
behavior.

NCL uses threshold gates for its basic logic elements [8]. The primary type of threshold
gate is the THmn gate, where 1 < m < n, as depicted in Figure 1. THmn gates have » inputs. At
least m of the » inputs must be asserted before the output will become asserted. Because NCL
threshold gates are designed with hysteresis, all asserted inputs must be de-asserted before the
output will be de-asserted. Hysteresis ensures a complete transition of inputs back to NULL
before asserting the output associated with the next wavefront of input data. Therefore, a THnn
gate is equivalent to an n-input C-element and a TH1# gate is equivalent to an n-input OR gate.
In a THmn gate, each of the » inputs is connected to the rounded portion of the gate; the output
emanates from the pointed end of the gate; and the gate’s threshold value, m, is written inside of
the gate. NCL threshold gates may also include a reset input to initialize the output. Resettable
gates are denoted by either a D or an N appearing inside the gate, along with the gate’s threshold,

referring to the gate being reset to logic 1 or logic 0, respectively.

Input 1
Input 2

Output

Input n

Figure 1. Thmn threshold gate. [1]

By employing threshold gates for each logic rail, NCL is able to determine the output
status without referencing time. Inputs are partitioned into two separate wavefronts, the NULL
wavefront and the DATA wavefront. The NULL wavefront consists of all inputs to a circuit
being NULL, while the DATA wavefront refers to all inputs being DATA, some combination of
DATAOQ and DATALI for dual-rail inputs. Initially, all circuit elements are reset to the NULL
state. First, a DATA wavefront is presented to the circuit. Once all of the outputs of the circuit
transition to DATA, the NULL wavefront is presented to the circuit. After all of the outputs of
the circuit transition to NULL, the next DATA wavefront is presented to the circuit. This
DATA/NULL cycle continues repeatedly. As soon as all outputs of the circuit are DATA, the
circuit’s result is valid. The NULL wavefront then transitions all of these DATA outputs back to
NULL. When the outputs transition back to DATA again, the next output is available. This
period is referred to as the DATA-to-DATA cycle time, denoted as Tpp, and has an analogous

role to the clock period in a synchronous system.

2.2.3 Completeness

The completeness of input criterion [5], which NCL combinational circuits and circuits
developed from other delay-insensitive paradigms [2,7] must maintain in order to be delay-
insensitive, requires the following criteria: 1. all the outputs of a combinational circuit may not

transition from NULL to DATA until all inputs have transitioned from NULL to DATA, and 2.

all the outputs of a combinational circuit may not transition from DATA to NULL until all inputs
have transitioned from DATA to NULL. In circuits with multiple outputs, it is acceptable,
according to Seitz’s weak conditions [2], for some of the outputs to transition without having a
complete input set present, as long as all outputs cannot transition before all inputs arrive.
Furthermore, circuits must also adhere to the completion-completeness criterion [9],
which requires that completion signals only be generated such that no two adjacent DATA
wavefronts can interact within any combinational component. This condition is only necessary
when the bit-wise completion strategy is used with selective input-incomplete components, since
it is inherent when using the full-word completion strategy and when using the bit-wise

completion strategy with no input-incomplete components [9].

2.2.4. Observability

One more condition must be met to ensure delay-insensitivity for NCL and other delay-
insensitive circuits [2,7]. No orphans may propagate through a gate [10]. An orphan is defined as
a wire that transitions during the current DATA wavefront, but is not used in the determination
of the output. Orphans are caused by wire forks and can be neglected through the isochronic fork
assumption [3] as long as they are not allowed to cross a gate boundary. This observability
condition, also referred to as indicatability or stability, ensures that every gate transition is
observable at the output, which means that every gate that transitions is necessary to transition at

least one of the outputs.

2.3 NULL Cycle Reduction (NCR) Overview [1]

The technique for reducing the NULL cycle, thus increasing throughput for any delay-
insensitive circuit developed according to the paradigms [2,5,7], is shown in Figure 2. The NCR

7

architecture in Figure 2 is specifically designed for dual-rail circuits utilizing full-word
completion, where all bits at the output of a registration stage are conjoined to form one
completion signal. Bit-wise completion only sends the completion signal from bit b in register
back to the bits in register;.; that took part in the calculation of bit 4. This method may therefore
require fewer logic levels in the completion circuitry than that of full-word completion, thus

increasing throughput.

Demultiplexer | prs Circuit #1 NULL Muiltiplexer
| E— m—
Reset to
Kil rfd Ko NULL Ki rin
Input DATA | DATA Output
({0 Reset)
— NULL i Circuit #2 DATA .
ompletion 8 8
Ko rfn
Detection ke V] Reset to g
st sz ko ko Nun ki
rfd rfn
S1 $2 $2 S1
1000 0010 0010 1000
Sequencer #1 Sequencer #2
fd Jxi Reset Reset Kip-Lfd L
Reset I T

Figure 2. NCR architecture.

Circuit #I and Circuit #2 are both dual-rail delay-insensitive combinational circuits
utilizing full-word completion, developed from one of the following delay-insensitive paradigms
[2,5,7], with at least an input and output registration stage. (Additional registration stages may be
present, thus further partitioning the combinational circuitry.) Both circuits have identical
functionality and are both initialized to output NULL and request DATA upon reset. In the case
of the NCL paradigm, the combinational functionality can be designed using the Threshold
Combinational Reduction method described in [11]; and the resulting circuit can also be
pipelined, as described in [12], to further increase throughput. The Demultiplexer partitions the

input, D, into two outputs, 4 and B, such that 4 receives the first DATA/NULL cycle and B
8

receives the second DATA/NULL cycle. The input continuously alternates between A and B.
The Completion Detection circuitry detects when either a complete DATA or NULL wavefront
has propagated through the Demultiplexer and requests the next NULL or DATA wavefront,
respectively. Sequencer #1 is controlled by the output of the Completion Detection circuitry and
is used to select either output 4 or B of the Demultiplexer. Output 4 of the Demultiplexer is input
to Circuit #1, when requested by Kj;; and output B of the Demultiplexer is input to Circuit #2,
when requested by Kj. The outputs of Circuit #1 and Circuit #2 are allowed to pass through their
respective output registers, as determined by Sequencer #2, which is controlled by the external
request, K;. The Multiplexer rejoins the partitioned data path by passing a DATA input on either
A or B to the output, or asserting NULL on the output when both 4 and B are NULL. Figure 2
shows the state of the system when a DATA wavefront is being input before its acknowledge
flows through the Completion Detection circuitry, and when a DATA wavefront is being output

before it is acknowledged by the receiver.

3. APPROACH AND IMPLEMENTATION

3.1 VHDL with ModelSim

Previously used VHDL files were supplied by Dr. Smith to allow the project to start.
These files included a 4-bit by 4-bit multiplier to use as the test circuit and a testbench to test the
circuit. Also included were the files necessary for implementing the NCR architecture: a dual-rail
signal declaration, mappings of common NCL gates, a demultiplexer, a multiplexer, a sequence

generator, and the completion detection circuitry.

3.1.1 Modifications to VHDL

Unfortunately, when the previous VHDL code was written, it was not intended for use in
Cadence. Several of the K, K, and reset signals were declared as dual-rail input or outputs. Only
one of the rails was used in the design, and the unused rail could cause potential problems when
running simulations in Cadence. All of the design files using these dual-rail signals were
modified to be standard logic input signals.

There were further modifications that needed to be done to allow the code to work
properly. Since the design was old, it was checked with the Cadence libraries for NCL
component discrepancies. Unfortunately, the mappings for TH12bx0, TH24compx0, and
THand0x0 were different. To correct this error, thc NCL map file was altered to account for the

different input and output mappings.

3.1.2 Simulating the Original Design

Initially, a single multiplier, shown in Figure 3, was compiled with its testbench and

simulated in ModelSim to ensure that functionality. Several output vectors were compared to

10

their desired values based on the input. These outputs were correct, so the design was
functioning properly. The testbench also included an “incorrect” signal that would transition to
logic high if an output was incorrect. This always stayed logic low, so the design was functioning

as desired. This signal was used in future simulations to ease the functionality checking.

4x4 Dual-Rail | [7-0]
)

Multiplier

Ko Ki p——————

Figure 3. One 4-bit by 4-bit multiplier.

3.1.3 Simulating the NCR Design

Using the NCR architecture shown in Figure 2, Circuit #1 and Circuit #2 each consisted
of a 4-bit by 4-bit multiplier. The design files, found in Appendix A and the following files from
[13], NCL _signals.vhd, NCL_gates.vhd, NCL_components.vhd, and NCL_functions.vhd, were
compiled, and the modified design was simulated to guarantee that it also was functional. The

incorrect signal always remained low, so the design was functioning properly.

3.2 Verilog Synthesis in Leonardo

To perform power simulations using Cadence, it was necessary to have a Verilog netlist
of the circuit. Leonardo, a VHDL to Verilog synthesis tool, was used to generate this file. A

series of steps had to be followed in order to secure a proper Verilog file generation.

11

3.2.1 Importing VHDL

To import the VHDL, a sample library was used in Leonardo. The ASIC/Sample/SCLO5u
library was loaded. The design files were then read into Leonardo in a top-down order to ensure
that all entities were mapped properly. The design was then optimized through flattening. Once

this was done, the correct netlist was generated by selecting the output type to be Verilog.

3.2.2 Running Scripts

Unfortunately, the generated file was not ready to be imported into Cadence: it lacked the
fanout, buffering, and supply voltage and ground signals required to perform power simulation.
To fix this, a series of scripts were run on the generated Verilog file. Before running any scripts,
however, the current Verilog file needed to be modified. The comments created by Leonardo
were removed at the beginning, and any additional module definitions other than the multiplier
design were deleted. The file could now be read properly by the scripts. The first script, fan.py,
inserted the fanout. The second script, buffer.py added in the necessary buffering. The final

script, AddPowGndFlatten.py, added in the supply voltage and ground signals.

3.3 Cadence Spectre

Utilizing Cadence Spectre was the final step in simulating the circuits. Cadence was used
to perform the numerous simulations of the circuits with altered supply voltages. The power was

measured from these simulations, and the results were compiled.

3.3.1 Importing Verilog

The Verilog netlist, found in Appendix B, was easily imported using the “Import
Verilog” feature in Cadence. The Target Library Name was NCL Ivt Li_zhen brett, a low

12

threshold voltage library copied so modifications could be done without affecting any other
designs or cluttering up a commonly used library. Under Schematic Generation Options, Full
Place and Route was disabled. Doing this reduced the amount of wires on the schematic; all of
the component input and output pins were tied together using net names. Both the single
multiplier and the NCR design were imported. Once imported, the specific portions of the NCR
design were given their own voltage sources whose values could easily be modified by changing
parameters. The parameter names assigned to the multiple supply voltages were as follows:
Vaiobar for the demultiplexer, sequencer #1, and completion detection circuitry; Vigea for the

circuit #1 and circuit #2; Vp,x for the mux; and Vg for the sequencer #2.

3.3.2 Generating Controller

In order to simulate the design, a control circuit that would generate the input patterns
was necessary. This design was contributed by Liang Zhou, who had a controller written in
VerilogA for another circuit that he had worked on previously. This controller was imported into
Cadence using the method mentioned in Section 3.3.1. The generated symbol was put into a
schematic along with the multiplier design. Initially, a single input vector of all 1’s was included
to verify the circuit functionality after being imported into Cadence. Once all of the designs
performed as expected, the controller’s output vector was modified to generate a random set of
inputs using the VerilogA random() function. A parameter was included within the parenthesis to
generate the same inputs every time the controller was simulated. The random value was
checked to see if it was even or odd, and then the controller assigned the dual-rail signals to be

either a 1 or 0, respectively.

13

3.3.3 Power Simulations

To simulate the designs, the Analog Design Environment within Cadence was used.
UltraSim was chosen as the simulator to produce fairly accurate results quickly. A transient
analysis was performed from Ons to 150ns. To easily modify the supply voltages, the parameters
mentioned in Section 3.3.1 were incorporated and modified as the simulation required. The
supply voltage currents, reset, K;, K,, and input and output signals were set to be plotted and
saved. Once these settings were correct, initial simulations were run for the single multiplier and
NCR designs.

After the first simulation of each design was finished, the output plots were checked to
safeguard that the design was properly imported. The controller was then modified as described
in Section 3.3.2 to generate a random input. The designs were then re-simulated using a range of
supply voltages with the new input patterns, and the outputs were plotted.

For each simulation using the NCR design, the Vigca, Vmux, and Vg were reduced in
certain sets. The first voltage reduced was Vioa because circuit #1 and circuit #2 were larger
than the multiplexor or sequence generator #2. Reducing only Vioca would reduce the overall
power the most effectively. The next voltage reduced was Vyux because the multiplexer was
larger than sequence generator #2. The last voltage reduced was Vg because the output select
was the smallest out of the three components that the reduced voltage could be applied to. These
were reduced until the period and power of the NCR design were lower than that of the single
multiplier design, if possible, with a smallest resolution of 10mV.

On the simulation plots, it was noted that the outputs took a short amount of time before
they began appearing. This delay occurred because the pipeline took a small amount of time to

fill up before the correct output could be observed. In order to calculate the period of the circuit,

14

the period of the main K, was averaged between the 10™ rising edge and the 20™ rising edge.
Taking the average in this manner ensured that the circuit had reached a steady state. Similarly,
the currents of all the voltage supplies were integrated from 50ns to 150ns to determine the
energy used by the circuit. From this data, the energy per operation was calculated using the

following equation:

150ns
Energy 22=1[Vx*f50n5 det]

Operation -1%

The results for the single multiplier design and the NCR design are shown below in Table

1.
Energy Calculation and Delay
Design Vegiobal lgiobal Viocal local Vinux lrmux Vel Isel Period | Energy/Op
) A | (V) | wA) | (V) | (WA [M] (A | (ns) (W)
M‘Z'I't‘ﬁ:ﬁer 120 | 1215 4.18 6.10
1.20 52.38 1.20 | 153.1 | 1.20 5.14 | 1.20 | 7.19 3.33 8.71
1.20 45.60 1.10 | 1224 | 1.20 462 | 1.20 | 6.33 3.76 7.61
1.20 4539 | 1.10 | 1216 | 1.10 | 411 | 1.20 | 6.21 3.78 7.56
NCR Design 1.20 4548 | 1.10 | 1204 | 1.10 | 4.08 | 1.10 | 5.48 3.80 7.51
1.20 39.49 1.00 95.0 1.20 430 | 1.20 | 5.46 4.36 6.72
1.20 39.52 1.00 94.7 1.00 3.18 | 1.20 | 5.39 4.39 6.67
1.20 39.26 | 1.00 92.8 1.00 3.13 | 1.00 | 4.23 4.46 6.56

Table 1. One-multiplier design results.

Unfortunately, there was no possibility of reducing the supply voltages of the NCR
design so that the period and power would be less than the single multiplier circuit. The
reduction of power with a comparable delay was closest when Vo, was reduced to 1.00V and
everything else remained at 1.2V. The period and power could not be reduced where both would
be better than the single multiplier because circuit #1 and circuit #2, the multiplier copies, were
fairly small; hence, the overhead of the added DEMUX, MUX, and Sequencers outweighed the

power savings. If the circuit that was duplicated was larger, a larger power reduction would be

15

seen when compared to the period increase, potentially allowing the circuit to be lower power

and faster.

3.3.4 Two-Multiplier Circuit Modification

To produce a circuit with a lower power and period would require enlarging the
duplicated circuit so that reducing the supply voltage would lessen power by a larger factor. Two
additional circuits were designed and simulated to test this hypothesis. Although these circuits
used the same multiplier, there were more copies of the multiplier which formed the larger
circuit.

The first additional circuit that was designed and simulated was two of the multipliers in
series, as shown in Figure 4. The new circuit no longer performed the same function as the
original circuit, but it served as a simple example of a larger circuit. The two-multiplier circuit
would now take the place of circuit #1 and circuit #2 in the NCR architecture. The 8-bit output
was split apart and sent to the two 4-bit inputs of the multiplier. In order to properly simulate the
design, the entire process from simulations in ModelSim to Verilog Synthesis to Cadence
simulation needed to be performed. The multiplier VHDL file was copied and altered to contain
two multipliers, tying the output of one to the input of another as shown in Appendix C.1. The
incorrect signal in the testbench was also modified to produce the correct output of the
multipliers strung together. The two-multiplier circuit and the new NCR design were simulated,

and the incorrect signal remained low, indicating a functional circuit.

oA ,>
4x4 Dual-Rail |{7..0} 4x4 Dual-Rail [1701 >
‘.___..__

{3..01 Multiplier {3..0} /\ Muitiplier

Ko Ki Ko Ki

Figure 4. Two-multiplier design.

16

The VHDL files were synthesized into Verilog netlists and imported into Cadence as

mentioned in Section 3.3.1. The schematics had to be modified to include the multiple supply

voltages, and the controller had to be included into the schematics as well. An all-1’s input

vector was simulated in UltraSim to ensure that the outputs of the imported two-multiplier circuit

and two-multiplier NCR design were correct, and the results matched the expected values. The

controller’s outputs were modified again to match the same random input values of the multiplier

circuits as before. A series of simulations was performed, as in Section 3.3.3, and the results are

shown below in Table 2.

Energy Calculation and Delay

Design Velobal lgobal Vioeal liocal Vinux [mux Vel Isel Period | Energy/Op
(V) (HA) (V) | (MA) | (V) | (mA) | (V) | (nA) (ns) (W)
Mi'lrt’ig;ﬁer 120 | 241.0 4.22 12.21
1.20 | 51.20 | 1.20 | 303.0 | 1.20 | 5.11 | 1.20 | 6.69 | 3.39 14.87
1.20 | 45.44 | 1.10 | 2424 | 1.20 | 458 | 1.20 | 6.03 | 3.83 12.77
1.20 | 4559 | 1.10 | 241.7 | 1.10 | 4.06 | 1.20 | 6.03 | 3.84 12.75
1.20 | 4538 | 1.10 | 2389 | 1.10 | 4.01 | 1.10 | 523 | 3.86 12.65
1.20 | 41.47 | 1.05 | 212.4 | 1.05 | 3.50 | 1.05 | 4.54 | 4.16 11.70
1.20 | 41.22 | 1.04 | 210.0 | 1.20 | 431 | 1.20 | 5.42 | 4.16 11.64
, 1.20 | 41.20 | 1.04 | 208.2 | 1.04 | 3.44 | 1.20 | 5.44 | 4.19 11.56
NCR Design
1.20 | 41.04 | 1.04 | 2053 | 1.04 | 3.43 | 1.04 | 441 | 4.23 11.46
1.20 | 41.26 | 1.03 | 203.1 | 1.20 | 427 | 120 | 536 | 4.23 11.43
1.20 | 41.03 | 1.03 | 2026 | 1.03 | 3.33 | 1.20 | 5.29 | 4.25 11.39
1.20 | 39.80 | 1.03 | 2009 | 1.03 | 3.33 | 1.03 | 437 | 430 11.30
1.20 | 38.85 | 1.00 | 187.1 | 1.20 | 4.23 | 1.20 | 5.16 | 4.43 10.86
1.20 | 39.10 | 1.00 | 185.2 | 1.00 | 3.11 | 1.20 | 5.15 | 4.46 10.77
1.20 | 3891 | 1.00 | 181.7 | 1.00 | 3.07 | 1.00 | 3.89 | 4.52 10.65

Table 2. Two-multiplier design results.

Using the two-multiplier NCR design, it was possible to achieve lower power and a

smaller period. The supply voltage parameter settings that accomplished this have been made

bold in Table 2. Using a 1.04V Vigey and Vi while maintaining the 1.2V supply on all other

17

circuit elements decreased the period by 0.03ns and the energy per operation by 0.65uJ. The
decreases correspond to a performance increase of approximately 0.7% and an energy decrease
of approximately 5.3%. Although these results were positive, the result was not as beneficial as

desired, so another circuit was designed.

3.3.5 Four-Multiplier Circuit Modification

To further show that supply voltage can have a large impact on power consumption when
using the NCR design, an even larger third circuit was designed. This circuit simply strung
together four of the multipliers, as shown in Figure 5. As with the first modification, the VHDL
files had to be edited to account for the additional multiplier circuits, as shown in Appendix C.2.
The new four-multiplier circuit and the four-multiplier NCR design were simulated to ensure
functionality. The incorrect signal stayed low during the simulation, so the circuit performed as

expected.

|[3‘.o1 N Multiplier 13.0] N Multiplier 13..0) Multiplier Bo Multiplier

Ko Ki J¢ Ko Ki Ko Ki Ko Ki

[Go) 7.4 @
4x4 Dual-Rail |{7..0] V'1 4x4 Dual-Rail {{7.0}] 4x4 Dual-Rail [{7.g] 4x4 Dual-Rail [7.q) >

Figure 5. Four-multiplier design.

Once again, the VHDL files were synthesized and imported into Cadence. An all-1’s
input vector was simulated using the controller, and the results of the four-multiplier circuit and
NCR design matched the expected values. Simulations using the same random inputs were
performed, and the results are shown below in Table 3.

Simulating the four-multiplier NCR design further showed the benefits of reducing
supply voltages in terms of power. It was possible for the NCR design to consume far less power

and maintain performance. The supply voltage parameter settings that accomplished this have

18

been made bold in Table 3. Using a 1.00V Vo and Vyux while maintaining the 1.2V supply on
all other circuit elements decreased the period by 0.01ns and the energy per operation by 6.02pJ.
The decreases correspond to a performance increase of approximately 0.02% and an energy
decrease of approximately 24.8%. Savings such as this could greatly benefit situations where
circuits require lower power to operate. It was observed that the lower MUX supply voltage

produced the same lower voltage at the output compared to the original design.

Power Calculation and Delay

Design Velobal laobal | Viocal liocal Vinux Imux Veel lsel Period | Energy/Op
(V) (HA) (V) [(wA) | VM) | (MA) | (VM) | (nA) (ns) (W)
Mi'l':ﬁ)'ﬁer 120 | 475.1 4.25 24.25
1.20 51.65 1.20 | 606.4 | 1.20 5.17 | 1.20 | 6.69 3.01 24.23
1.20 46.12 1.10 | 485.5 | 1.20 463 | 1.20 | 6.04 3.60 21.69
1.20 45.76 1.10 | 483.8 | 1.10 4.12 1.20 | 6.03 3.61 21.65
1.20 45.52 1.10 | 479.8 | 1.10 410 | 1.10 | 5.27 3.64 21.60
. 1.20 39.80 | 1.01 | 378.1 | 1.01 3.18 | 1.01 | 4.10 4.24 18.51
NCR Design
1.20 40.19 1.00 | 374.8 | 1.20 4.26 | 1.20 | 5.16 4.21 18.29
1.20 39.48 | 1.00 | 372.8 | 1.00 3.13 | 1.20 | 5.17 4.24 18.23
1.20 38.94 1.00 | 366.0 | 1.00 3.11 | 1.00 | 3.93 431 18.11
1.20 39.32 0.99 | 363.7 | 1.20 432 | 1.20 | 5.05 4.29 17.94
1.20 3899 | 0.99 | 360.9 | 0.99 3.05 | 1.20 | 4.95 4.32 17.85

Table 3. Four-multiplier design results.

19

4. CONCLUSIONS

Although it was impossible to reduce the power and maintain the performance of the
initial one-multiplier NCR design, it was possible to greatly reduce the power while maintaining
performance of additional circuits by scaling the supply voltage. This power reduction was
demonstrated by enlarging the duplicated circuit. By stringing together two-multiplier and four-
multiplier NCR designs and performing transistor-level simulations in Cadence to calculate
power, it was clearly seen that the power reduction possible greatly increases as the duplicated
circuit size increases. The decrease in power consumption occurred because the lesser supply
voltage was distributed over a larger portion of the entire NCR design. The preferred design has
a reduced supply voltage connected to only the duplicated circuit; this connection will ensure
that the outputs are at the nominal supply voltage level and are therefore equivalent to the
original design.

The technique of applying the NCR architecture to a circuit and then reducing the supply
voltage to the duplicated circuits could be extremely useful in reducing the power of large
circuits. As circuit size increases, the benefits of this technique increase rapidly. The supply
voltage levels and components thereby supplied can be fine-tuned to produce a circuit with the
exact same performance as the individual circuit with far less power usage.

This method of lowering power could tremendously increase the benefits seen by circuits
designed at the University of Arkansas especially if power consumption is the primary concern.
Since the technique is easy to implement in asynchronous designs, it could also be applied to any
previously designed circuits to reduce power provided that the circuit is large enough to benefit.

For future work, this technique could be applied to different-sized circuits more

extensively to determine the exact benefits of size. Other methods of reducing power could also

20

be investigated in parallel. These include altering the threshold voltages of the transistors,
applying the global supply voltage to the critical path of the duplicated circuit while further

lowering the local supply voltage, or transistor reordering.

21

REFERENCES

[1] S. C. Smith, "Speedup of NULL convention digital circuits using NULL cycle reduction,"
Journal of Systems Architecture, vol. 52, pp. 411-422, 2006.

[2] C.L. Seitz, System timing.: Addison-Wesley, 1980.

[3]1A.J. Martin, "Programming in VLSL" in Development in Concurrency and
Communication.: Addison-Wesley, 1990, pp. 1-64.

[4] D.E. Muller, "Asynchronous logics and application to information processing," in Switching

Theory in Space Technology.: Stanford University Press, 1963, pp. 289-297.

[5] K.M. Fant and S.A. Brandt, "NULL convention logic: a complete and consistent logic for
asynchronous digital circuit synthesis," in International Conference on Application Specific
Systems, Architectures, and Processors, 1996, pp. 261-273.

[6] T. Verhoff, "Delay-insensitive codes—an overview," Distributed Computing, vol. 3, pp. 1-
8, 1988.

[7] L. David, R. Ginosaur, and M. Yoeli, "An efficient implementation of boolean functions as
self-timed circuits," IEEE Transactions on Computers, vol. 41, no. 1, pp. 2-10, 1996.

[8] G.E. Sobelman and K.M. Fant, "CMOS circuit design of threshold gates with hysteresis," in
IEEE International Symposium on Circuits and Systems, vol. II, 1998, pp. 61-65.

[9] S.C. Smith, "Completion-completeness for NULL convention digital circuits utilizing the
bit-wise completion strategy," in The 2003 International Conference on VLSI, 2003, pp.

143-149.

[10] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, "Checking delay-insensitivity:

22

10* gates and beyond," in Eighth International Symposium on Asynchronous Circuits and

Systems, 2002, pp. 137-145.

[11] S.C. Smith, R.F. DeMara, J.S. Yuan, D. Ferguson, and D. Lamb, "Optimization of NULL
convention self-timed circuits," Integration, The VLSI Journal, vol. 37, no. 3, pp. 135-165,
2004.

[12] S.C. Smith, R.F. DeMara, M. Hagedorn, and D. Ferguson, "Delay-insensitive gate-level
pipelining," Integration, The VLSI Journal, vol. 30, no. 2, pp. 103-131, 2001.

[13] Scott C. Smith. (2011, March) Dr. Scott C. Smith: Projects. [Online].

http://comp.uark.edu/~smithsco/CCLI async.html

23

A. SINGLE MULTIPLIER VHDL FILES

A.1 demux.vhd

library IEEE;
use ieee.std_logic 1164.all;
use work.ncl_signals.all;

entity demux is
port (a: IN dual_rail logic;
rst, kil, ki2, s1, s2: IN std_logic;
z1, z2: OUT dual rail logic;
ko: OUT std_logic);
end demux;

architecture arch of demux is
signal t1, t2: dual rail logic;

component th33nx0
port(a: in std_logic;
b: in std_logic;
c: in std_logic;
rst: in std_logic;
z: out std_logic);
end component;

component th14bx0
port(a: in std_logic;
b: in std_logic;
c: in std_logic;
d: in std_logic;
zb: out std_logic);
end component;

begin
i11: th33nx0
port map(a.raill, sl, kil, rst, tl.raill);

i10: th33nx0
port map(a.rail0, s1, kil, rst, t1.rail0);
zl <=1tl;

i21: th33nx0
port map(a.raill, s2, ki2, rst, t2.raill);

24

i20: th33nx0
port map(a.rail0, s2, ki2, rst, t2.rail0);
72 <=12;

kO: th14bx0
port map(tl.raill, tl.rail0, t2.raill, t2.rail0, ko);
-- ko.rail0 <="0";

end arch;
A.2 demux_gen.vhd

library IEEE;
use ieee.std_logic 1164.all;
use work.ncl_signals.all;

entity dmux is
generic(width: in integer := 1);
port(a: IN dual_rail logic_vector(width-1 downto 0);
rst, kil, ki2, s1, s2: IN std_logic;
z1, z2: OUT dual rail logic vector(width-1 downto 0);
ko: OUT std_logic_vector(width-1 downto 0));
end dmux;

architecture arch of dmux is

component demux
port (a: IN dual rail logic;
rst, kil, ki2, s1, s2: IN std_logic;
z1, z2: OUT dual rail logic;
ko: OUT std_logic);
end component;
begin
struct: for i in a'range generate
comp: demux
port map(a(i), rst, kil, ki2, s1, s2, z1(i), z2(i), ko(i));
end generate struct;

end arch;
A.3 mult4x4 1stage.vhd

library ieee;
use ieee.std logic 1164.all;

25

use work.ncl_signals.all;
use work.dual rail.all;

entity mult4x4 1nis
port(x, y: in dual rail logic VECTOR(3 downto 0);
ki, reset: in std_logic;
s: out dual rail logic VECTOR(7 downto 0);
ko: out std_logic);
end;

architecture BEHAVIOR of mult4x4 1nis

signal ppl, pp2, pp3, pp4, pp3S, pp6, pp7, pp8, pp9: dual rail logic;

signal pp10, ppl1, ppl2, ppl3, ppl4, ppl5: dual rail logic;

signal ¢l _1,cl1 2,¢cl1 3,cl 4,cl_5: dual rail logic;

signal s1 0,s1 1,s1 2,s1 3,sl 4,s1 5:dual rail logic;

signal ¢2_3,¢2 4,¢2 5,c2 6,c2 7:dual rail logic;

signal s2 2,s2 3,s2 4,52 5,52 6,s3 3:dual rail logic;

signal ¢3 4,s3 4,c3 5: dual rail logic;

signal x_o, y_o: dual rail logic VECTOR(3 downto 0);

signal temp0, temp0_in, temp0_out: dual rail logic VECTOR(7 downto 0);

signal ki 0, ko 0: std_logic VECTOR(7 downto 0);

signal temp1, templ _in, templ out: dual rail logic VECTOR(15 downto 0);

signal ki_1, ko 1:std logic VECTOR(15 downto 0);

signal temp2, temp2_in, temp2_ out: dual rail logic VECTOR(12 downto 0);

signal ki 2, ko 2:std logic VECTOR(12 downto 0);

signal temp3, temp3_in, temp3_out: dual rail logic VECTOR(11 downto 0);

signal ki 3, ko 3:std logic VECTOR(11 downto 0);

signal temp4, temp4 _in, temp4 out: dual rail logic VECTOR(11 downto 0);

signal ki 4, ko 4: std_logic VECTOR(11 downto 0);

signal temp5, temp5_in, temp5_out: dual rail logic VECTOR(10 downto 0);

signal ki_5, ko 5: std_logic VECTOR(10 downto 0);

signal temp6, temp6 _in, temp6_out: dual rail logic VECTOR(9 downto 0);

signal ki_6, ko_6: std_logic VECTOR(9 downto 0);

signal temp7, temp7_in: dual rail logic VECTOR(7 downto 0);

signal ki 7, ko 7:std _logic VECTOR(7 downto 0);

signal ki0, kil, ki2, ki3, ki4, ki5, ki6: std_logic;

signal pp15_o, ppl4 o, ppl3 o, ppl2 o, ppll o, ppl0_o: dual rail logic;

signal pp9 o, pp8_o, pp7 o, pp6_o, ppS5_o, pp4 o, pp3_o, pp2 o, ppl_o, sl 0 o:
dual_rail logic;

signal pp150, c1 50, sl 50, cl_40,sl 4o, cl 3o, ppl20, sl 30,cl 20,s1 20,cl _lo,
sl _lo, sl _0Oo: dual rail logic;

signal ¢2_70, s2_60, ¢2_60, s2 50, ¢2_50, s2_ 40, c2_40, c2 30, s2 30, s2_20,s2 lo,
s2_0o: dual rail logic;

signal ¢2 7 0,52 6 0,¢c2 6 0,52 5 0,¢c2 5 0,524 0,c2 4 0,¢c3 40,533 o0,
s2 2 0,52 1 0,52 0 o:dual rail logic;

26

signal ¢2 7 ol,s2 6 ol,c2 6 0l,s2 5 0ol,c2 5 ol,c3 50,54 4,54 3,54 2,54 1,
s4 0: dual rail logic;

signal ¢2 7 02, s2 6 02, ¢c2 6 02, c4 60, s5 5, s5 4, s5 3, s5 2, s5_1, s5 0:
dual rail logic;

signal s4 7,c4 7,s4 6,c4 6,s4 5:dual rail logic;

component full add
port(c_in, x, y: in dual rail logic;
c_out, s: out dual rail logic);
end component;

component half add
port(x, y: in dual_rail logic;
c_out, s: out dual rail logic);
end component;

component ncl_register
generic(width: in integer;
initial value: in integer);
port(data_in: in dual rail logic VECTOR(width - 1 downto 0);
ki: in std_logic VECTOR(width - 1 downto 0);
rst: in std_logic;
data_out: out dual rail logic VECTOR(width - 1 downto 0);
ko: out std_logic VECTOR(width - 1 downto 0));
end component;

component comp8a
port(a: in std_logic VECTOR(7 downto 0);
z: out std_logic);
end component;

component and2
port(a, b: in dual rail logic;
z: out dual rail logic);
end component;

component and2i
port(a, b: in dual_rail logic;
z: out dual rail _logic);
end component;

component gens7
port(c, X, y, z: in dual_rail logic;
s: out dual rail logic);
end component;

27

begin
temp0 in<=x & y;

COMPO: comp8a
port map(ko_0, ko);

REGO: ncl_register
generic map(8, 2)
port map(temp0_in, ki_0, reset, temp0_out, ko_0);
ki 0(7) <=ki0;
ki 0(6) <=ki0;
ki 0(5) <=ki0;
ki 0(4) <=ki0;
ki 0(3) <=ki0;
ki_0(2) <=ki0;
ki_0(1) <=ki0;
ki_0(0) <=ki0;
x_0 <=temp0_out(7 downto 4);
y_o <=temp0_out(3 downto 0);

GEN_S0: and2
port map(y_o(0), x_o(0), s1_0);

GEN_PP1: and2i
port map(y_o(0), x_o(1), ppl);

GEN_PP2: and2i
port map(y_o(0), x_o(2), pp2);

GEN_PP3: and2i
port map(y_o(0), x_o(3), pp3);

GEN_PP4: and2i
port map(y_o(1), x_o(0), pp4);

GEN_PP5: and2
port map(y_o(1), x_o(1), pp5);

GEN_PP6: and2i
port map(y_o(1), x_o(2), pp6);

GEN_PP7: and2i
port map(y_o(1), x_o(3), pp7);

GEN_PPS8: and2i

28

port map(y_o(2), x_o(0), pp8);

GEN_PP9: and2i
port map(y_o(2), x_o(1), pp9);

GEN_PP10: and2
port map(y_o(2), x_o(2), pp10);

GEN_PP11: and2i
port map(y_o(2), x_o(3), ppl1);

GEN_PP12: and2i
port map(y_o(3), x_o(0), pp12);

GEN_PP13: and2i
port map(y_o(3), x_o(1), pp13);

GEN_PP14: and2i
port map(y_o(3), x_o(2), ppl4);

GEN_PP15: and2
port map(y_o(3), x_o(3), ppl5);

templ _out <= ppl5 & ppl4 & ppl3 & ppl2 & ppll & ppl0 & pp9 & pp8 & pp7 &
pp6 & ppS & pp4 & pp3 & pp2 & ppl & s1_0;

ppl5_o <=templ_out(15);
ppl4 o <=templ out(14);
ppl3_o <=templ out(13);
ppl2 o <=templ out(12);
ppll o <=templ out(11);
ppl0_o <=templ out(10);
pp9 o <=templ out(9);
pp8 o <=templ out(8);
pp7_o <=templ_out(7);
pp6_o <=templ_out(6);
ppS_o <=templ out(5);
pp4_o <=templ out(4);
pp3_o <=templ out(3);
pp2_o <=templ out(2);
ppl o <=templ out(1l);
sl 0 o<=templ out(0);

29

HA1 1: half add
port map(ppl o, pp4 o,cl 1,s1 1);

FA1 2: full add
port map(pp2_o, ppS_o, pp8_o,cl _2,s1 2);

FA1 3:full add
port map(pp3_o, pp6_o, pp9 o,cl _3,s1 3);

FA1 4: full add
port map(pp7_o, ppl0 o, ppl3 o,cl_4,sl1 4);

HA1 5: half add
port map(ppll o, ppl4 o,cl 5,sl 5);

temp2 out <=ppl5 o & cl S5&sl 5&cl 4&sl 4&cl 3&ppl2 o&ksl 3&
cl 2&sl 2&cl 1&sl 1&sl1 0 o;

ppl50 <=temp2 out(12);
cl S50 <=temp2 out(11);
sl 50 <=temp2 out(10);
cl 40 <=temp2 out(9);
sl 4o <=temp2 out(8);
cl 30 <=temp2 out(7);
ppl2o <=temp2 out(6);
sl_30 <=temp2_out(5);
cl 20 <=temp2 out(4);
sl 20 <=temp2 out(3);
cl_lo <=temp2 out(2);
sl _lo <=temp2 out(1l);
sl 0o <=temp2_ out(0);

HA2 2: half add
port map(cl_lo, sl 20,c2 3,s2 2);

FA2 3: full add
port map(ppl20, cl 20, sl 30,c2 4,s2 3);

HA2 4: half add
port map(cl_3o0, sl 4o0,c2 5,s2 4);

HA2 5: half add
port map(cl 4o, sl _50,c2_6,s2 5);

30

HA2 6: half add
port map(ppl50,cl_5So,¢c2 7,s2 6);

temp3 out<=c2 7&s2 6&c2 6&s2 5&c2 5&s2 4&c2 4&c23&s23&
s2 2& sl _lo & sl Oo;

c2 70 <=temp3 out(11);
s2_60 <=temp3_out(10);
c2_60 <=temp3 out(9);
s2_50 <=temp3_out(8);
c2 50 <=temp3 out(7);
s2_40 <=temp3_out(6);
c2_ 4o <=temp3_out(5);
c2 30 <=temp3 out(4);
s2_ 30 <=temp3 out(3);
s2 20 <=temp3_out(2);
s2_lo <=temp3_out(1l);
s2 0o <=temp3_out(0);

HA3 3: half add
port map(c2_30,s2 30,c3 4,s3 3);

temp4 out<=c2 7o & s2 60&c2 60& s2 50&c2 50&s2 4d0&c2 4o&c3 4 &
s3 3&s2 20&s2 1o & s2 Oo;

c2 7 o<=temp4 out(11);
s2_6 o <=temp4 out(10);
c2_6_o <=temp4 out(9);
s2_5 o <=temp4_out(8);
c2_ 5 o<=temp4 out(7);
s2 4 o <=temp4 out(6);
c2 4 o<=temp4 out(5);
c3_4 o <=temp4_out(4);
s3_3 o <=temp4 out(3);
s2_2 o <=temp4 out(2);
s2 1 o <=temp4 out(1);
s2 0 _o <=temp4_out(0);

FA4 4: full add
port map(s2_ 4 o,c2 4 0,c3 4 o,c3 5,53 4);

31

tempS out <=c2 70&s2 6 0&c2 6 0&s250&c250&c35&s34&
s330&s220&s21 0&s20 0;

c2 7 ol <=temp5_out(10);
s2 6 ol <=tempS5 out(9),
c2 6 ol <=tempS out(8);
s2 5 ol <=temp5 out(7);
c2_5_ol <=temp5_out(6);
c3 50 <=temp5_out(5);
s4 4 <=temp5 out(4),
s4 3 <=temp5_out(3);

s4 2 <=temp5_out(2);
s4 1 <=temp5 out(1);
s4 0 <=temp5 out(0);

FA4 5: full add
port map(c3_50,¢c2 5 ol,s2 5 ol,c4 6,s4 5);

tempb out <=c2 7 0l &s2 6 01 &c2 6 ol &c4 6&sd4 S5&s4 4&s4 3&s4 2
&s4 1&s4 0;

c2_7 02 <=tempb6 out(9);
s2_6_o02 <=temp6_out(8);
c2 6 02 <=tempb6_out(7);
c4_60 <=tempb_out(6);
s5_5 <=temp6_out(5);
s5_4 <=temp6 out(4);
s5_3 <=temp6_out(3);
s5_2 <=temp6_out(2);
s5_1 <=temp6_out(1);
s5_0 <=temp6_out(0);

FA4 6: full add
port map(c4_60,c2 6 02,s2 6 02, open, s4 6);

g4 1 S7: gens7
port map(c2 7 02,s2 6 02,c2 6 02,c4 60,54 7);

temp7 in<=s4 7&s4 6&s5 S&s5 4&s5 3&s5 2&s5 1&s5 0;

32

COMP7: comp8a
port map(ko_7, ki0);

REGT7: ncl_register
generic map(8, 2)
port map(temp7 _in, ki_7, reset, s, ko_7);

ki_7(7) <=ki;

ki_7(6) <=ki;

ki 7(5) <=ki;

ki_7(4) <=ki;

ki_7(3) <=ki;

ki 7(2) <=ki;

ki 7(1) <=ki;

ki_7(0) <= ki,

end BEHAVIOR;

A.4 mult4x4 rnc.vhd

s: out dual rail logic vector (7 downto 0);
ko: out std_logic);
end multdx4;

architecture BEHAVIOR of mult4x4 is
signal data_in, dil, di2, dol, do2: dual_rail logic vector(7 downto 0);
signal kod: std_logic_vector(7 downto 0);
signal kol, ko2, kil, ki2, kot, s1, s2: std_logic;

component mult4x4 1n
port(x, y: IN dual rail logic vector (3 downto 0);
ki, reset: IN std_logic;
s: OUT dual rail logic vector (7 downto 0);
ko: OUT std_logic);
end component;

component dmux
generic(width: in integer := 1);
port(a: IN dual rail logic vector(width-1 downto 0);
rst, kil, ki2: IN std_logic;
sl, s2: IN std_logic;
z1, z2: OUT dual rail logic vector(width-1 downto 0);
ko: OUT std_logic vector(width-1 downto 0));
end component;

component mux
generic(width: in integer := 1);

33

port(al, a2: IN dual rail logic vector(width-1 downto 0);
z: OUT dual rail logic vector(width-1 downto 0));
end component;

component comp8a
port(a: IN std_logic vector(7 downto 0);
z: OUT std _logic);
end component;

component selct
port (ki, rst: IN std_logic;
sl, s2: OUT std_logic);
end component;

begin
data in<=x & y;

DEMUX INPUT: dmux
generic map(8)
port map(data_in, reset, kol, ko2, s, s2, dil, di2, kod);

COMP: comp8a
port map(kod, kot);
ko <= kot;

SELECT INPUT: selct
port map(kot, reset, sl, s2);

COMBI: mult4x4 1n
port map(di1(7 downto 4), dil(3 downto 0), kil, reset, do1, kol);

COMB2: mult4x4 1n
port map(di2(7 downto 4), di2(3 downto 0), ki2, reset, do2, ko2);

MUX_OUTPUT: mux
generic map(8)
port map(do1, do2, s);

SELECT OUTPUT: selct
port map(ki, reset, kil, ki2);
- kil.rail0 <="0";
-- ki2.rail0 <="0";

end BEHAVIOR;

34

A.S5 mux_gen.vhd

library ieee;
use ieee.std_logic 1164.all;
use work.ncl_signals.all;

entity mux is
generic(width: in integer := 1);
port(al, a2: IN dual rail logic vector(width-1 downto 0);
z: OUT dual rail logic_vector(width-1 downto 0));
end mux;

architecture arch of mux is

component th12x0
port (a: IN std_logic;
b: IN std_logic;
z: OUT std_logic);
end component;

begin
struct: for i in al'range generate
compO: th12x0
port map(al(i).rail0, a2(i).rail0, z(i).rail0);

compl: th12x0
port map(al(i).raill, a2(i).raill, z(i).raill);
end generate struct;

end arch;
A.6 select.vhd

library ieee;
use ieee.std_logic 1164.all;

entity selct is
port (ki, rst: IN std_logic;
sl, s2: OUT std_logic);
end selct;

architecture arch of selct is
signal d0, d1, d2, d3, 10, r1, 12, r3: std_logic;

component th33nx0

35

port(a: in std_logic;
b: in std_logic;
c: in std_logic;
rst: in std_logic;
z: out std_logic);
end component;

component th33dx0
port(a: in std_logic;
b: in std_logic;
c: in std_logic;
rst: in std_logic;
z: out std_logic);
end component;

component invx(
port(i: in std_logic;
zb: out std_logic);
end component;
begin

20: th33nx0
port map(ki, d3, r1, rst, d0);

gl: th33dx0
port map(ki, dO, r2, rst, d1);

g2: th33nx0
port map(ki, d1, r3, rst, d2);

23: th33nx0
port map(ki, d2, r0, rst, d3);

i0: invx0
port map(d0, r0);

il: invx0
port map(dl, rl);

i2: invx0
port map(d2, r2);

i3: invx0
port map(d3, r3);

sl <=d2;

36

s2 <=d0;
end arch;

A.7 tb_multd4x4 full.vhd

Library IEEE;

use [EEE.std logic 1164.all;

use IEEE.std logic_unsigned.all;
use work.ncl signals.all;

use work.dual_rail.all;

use work.functions.all;
use std.textio.all;

entity TB_ MULT4x4 is
end;

architecture TESTBENCH of TB_ MULT4x4 is
signal x, y, Xx_temp, X_next, y_temp, y next: DUAL RAIL LOGIC_VECTOR(3

downto 0);
signal s: DUAL_RAIL LOGIC VECTOR(7 downto 0);
signal xy calc: std_logic_vector(7 downto 0) := "00000000";
signal ki, ko, reset: STD LOGIC;
signal cx, cy: DUAL_RAIL LOGIC _VECTOR(3 downto 2);
signal incorrect: std_logic :='0";
type output_array is array(0 to 256) of std_logic_vector(7 downto 0);
signal s_calc_array: output_array;
component mult4x4 -- 1n
port(x, y: in DUAL_RAIL LOGIC VECTOR(3 downto 0);
ki, reset: in STD_LOGIC;
s: out DUAL RAIL LOGIC_VECTOR(7 downto 0);
ko: out STD_LOGIC);
end component;
begin

UUT: MULT4x4 -- 1n
port map(x, v, ki, reset, s, ko);

CALC_ANSWER: process
begin
foriin 0 to 256 loop
s _calc_array(i) <= xy_calc(7 downto 4) * xy calc(3 downto 0);
Xy_calc <=xy calc +'l";

37

wait for 0 ns;
end loop;
wait;
end process;

INPUTS: process
begin
--reset <='0";
reset <="'1";
wait until ko'event and ko ='1";
reset <="'0";

x(0).rail0 <="'1";
x(0).raill <='0";
x(1).rail0 <="'1"
x(1).raill <="0";
X(2).rail0 <="1";
x(2).raill <="'0";
x(3).rail0 <="1";
x(3).raill <="'0"
y(0).rail0 <="1";
y(0).raill <="'0";
y(1).rail0 <="'1";
y(1).raill <="0";
y(2).rail0 <="1";
y(2).raill <="0';
y(3).rail0 <="'1";
y(3).raill <="0";

wait for 0 ns;

while (x(3).raill ='0" or x(2).raill ="'0" or x(1).raill ="'0' or x(0).raill ="'0")
loop
wait until ko'event and ko ='0";

cy(2) <= y(0) and y(1);
cy(3) <= y(0) and y(1) and y(2);

cx(2) <=x(0) and x(1);
¢x(3) <= x(0) and x(1) and x(2);

wait for O ns;

y_temp <=y;

y_next(0) <= not(y(0));

y_next(1) <= y(1) xor y(0);

y_next(2) <= cy(2) xor y(2);

38

y_next(3) <= cy(3) xor y(3);

X_temp <=X;

x_next(0) <= not(x(0));
x_next(1) <= x(1) xor x(0);
X_next(2) <= cx(2) xor x(2);
x_next(3) <= c¢x(3) xor x(3);

x(0).rail0 <="'0';

x(0).raill <="'0";

x(1).rail0 <="'0";

x(1).raill <="0";

x(2).rail0 <="'0';

x(2).raill <='0';

x(3).rail0 <="'0';

x(3).raill <='0";

y(0).rail0 <="'0';

y(0).raill <='0";

y(1).rail0 <="'0';

y(1).raill <='0";

y(2).rail0 <="'0';

y(2).raill <='0";

y(3).rail0 <='0";

y(3).raill <="'0';
wait until ko'event and ko ='1";
if (y_temp(3).raill = '1' and y temp(2).raill = '1' and

y_temp(1).raill ='1"and y_temp(0).raill ='1") then
X <= X_next;
else
X <=X_temp;

end if;
y <= y_next;
wait for 0 ns;

end loop;

while (x(3).raill ='1" or x(2).raill ="'1" or x(1).raill ="1" or x(0).raill ='1")
loop

wait until ko'event and ko ="'0'";

cy(2) <=y(0) and y(1);
cy(3) <= y(0) and y(1) and y(2);

cx(2) <= x(0) and x(1);

cx(3) <= x(0) and x(1) and x(2);
wait for 0 ns;

y_temp <=y;

39

y_next(0) <= not(y(0));
y_next(1) <= y(1) xor y(0);
y_next(2) <= cy(2) xor y(2);
y_next(3) <= cy(3) xor y(3);

X_temp <=Xx;

x_next(0) <= not(x(0));
x_next(1) <=x(1) xor x(0);
X_next(2) <= cx(2) xor x(2);
x_next(3) <= cx(3) xor x(3);

x(0).rail0 <="0';
x(0).raill <="'0';
x(1).rail0 <="'0";
x(1).raill <="0";
x(2).rail0 <="'0';
x(2).raill <='0";
x(3).rail0 <="'0";
x(3).raill <='0";
y(0).rail0 <="'0';
y(0).raill <="'0';
y(1).rail0 <="'0';
y(1).raill <="0";
y(2).rail0 <="'0";
y(2).raill <="'0";
y(3).rail0 <="'0';
y(3).raill <='0';
wait until ko'event and ko ="'1";
if (y_temp(3).raill ='1' and y_temp(2).raill ='1" and y_temp(1).raill ="'1'
and y_temp(0).raill ='1") then
X <= X_next;
else
X <=Xx_temp;
end if;
y <=y_next;
wait for O ns;

end loop;
wait;
end process;

OUTPUTS: process
variable ss: side;
variable bw: width := 6;
variable I: line;

variable tm: time;

40

variable once: bit :=='0";
- file t: text is out "/home/bsparkma/Senior_Thesis/ModelSim/t.txt";
variable j: integer := 0;

begin
-- ki.rail0 <="'0";
while (true) loop
ki<="1"
end TESTBENCH;

configuration CFG_TB MULT4x4 of TB_ MULT4x4 is
for TESTBENCH
for UUT: MULT4x4 --_1n
end for;{Library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std_logic_unsigned.all;
use work.ncl signals.all;
use work.dual rail.all;

use work.functions.all;
use std.textio.all;

entity TB_ MULT4x4 is
end;

architecture TESTBENCH of TB. MULT4x4 is
signal x, y, x_temp, x_next, y_temp, y_next: DUAL RAIL LOGIC VECTOR(3
downto 0);

signal s: DUAL RAIL LOGIC_VECTOR(7 downto 0);

signal xy calc: std_logic_vector(7 downto 0) := "00000000";
signal ki, ko, reset: STD LOGIC;
signal cx, cy: DUAL_RAIL LOGIC _VECTOR(3 downto 2);
signal incorrect: std_logic :="'0";

type output_array is array(0 to 256) of std_logic_vector(7 downto 0);
signal s_calc_array: output array;

component mult4x4 -- 1n
port(x, y: in DUAL_RAIL _LOGIC_VECTOR(3 downto 0);
ki, reset: in STD_LOGIC;
s: out DUAL RAIL LOGIC VECTOR(7 downto 0);
ko: out STD LOGIC);

end component;

41

begin
UUT: MULT4x4 --_1n
port map(X, y, ki, reset, s, ko);

CALC_ANSWER: process
begin
for i in 0 to 256 loop
s_calc_array(i) <= xy_calc(7 downto 4) * xy_calc(3 downto 0);
Xy _calc <=xy calc +'l";
wait for O ns;
end loop;
wait;
end process;

INPUTS: process
begin
--reset <='0';
reset <="'1";
wait until ko'event and ko ="'1";
reset <='0";

x(0).rail0 <="1";
x(0).raill <="'0";
x(1).rail0 <="1";
x(1).raill <="'0";
x(2).rail0 <="'1";
x(2).raill <="'0';
x(3).rail0 <="1";
x(3).raill <="0";
y(0).rail0 <="'1";
y(0).raill <="0";
y(1).rail0 <="1";
y(1).raill <="'0';
y(2).rail0 <="'1";
y(2).raill <="0";
y(3).rail0 <="'1";
y(3).raill <="'0";

wait for 0 ns;
while (x(3).raill ="'0' or x(2).raill ='0" or x(1).raill ='0" or x(0).raill ="'0")

loop
wait until ko'event and ko ='0';

42

cy(2) <= y(0) and y(1);
¢cy(3) <= y(0) and y(1) and y(2);

¢x(2) <=x(0) and x(1);
¢x(3) <= x(0) and x(1) and x(2);

wait for O ns;

y_temp <=y;

y_next(0) <= not(y(0));

y_next(1) <= y(1) xor y(0);

y_next(2) <= cy(2) xor y(2);

y_next(3) <=cy(3) xor y(3);

X_temp <= Xx;

x_next(0) <= not(x(0));
x_next(1) <=x(1) xor x(0);
X_next(2) <= cx(2) xor x(2);
x_next(3) <= cx(3) xor x(3);

x(0).rail0 <="0";

x(0).raill <='0";

x(1).rail0 <="'0";

x(1).raill <="'0";

x(2).rail0 <="'0';

x(2).raill <="'0';

X(3).rail0 <="'0";

x(3).raill <="'0"

y(0).rail0 <="'0";

y(0).raill <='0";

y(1).rail0 <="'0';

y(1).raill <='0";

y(2).rail0 <="0';

y(2).raill <="'0";

y(3).rail0 <="'0"

y(3).raill <='0";
wait until ko'event and ko ='1";
if (y_temp(3)raill = '1' and y temp(2).raill = '1' and

y_temp(1l).raill ='1'and y_temp(0).raill ='1") then
X <= X _next;
else
X <=x_temp;,

end if;
y <=y_next;
wait for 0 ns;

end loop;

43

loop

and y_temp(0).raill =

while (x(3).raill ='1' or x(2).raill ="'1" or x(1).raill ='1' or x(0).raill ="'1")
wait until ko'event and ko ="'0';

cy(2) <=y(0) and y(1);
cy(3) <= y(0) and y(1) and y(2);

cx(2) <= x(0) and x(1);

cx(3) <= x(0) and x(1) and x(2);
wait for O ns;

y_temp <=y;

y_next(0) <= not(y(0));
y_next(1) <= y(1) xor y(0);
y_next(2) <= cy(2) xor y(2);
y_next(3) <= cy(3) xor y(3);

X_temp <= X;

x_next(0) <= not(x(0));
x_next(1) <= x(1) xor x(0);
X_next(2) <= cx(2) xor x(2);
x_next(3) <= cx(3) xor x(3);

x(0).rail0 <="0";
x(0).raill <="'0';
x(1).rail0 <="'0";
x(1).raill <="'0';
x(2).rail0 <="0";
X(2).raill <="'0";
x(3).rail0 <="0";
x(3).raill <="'0";
y(0).rail0 <="'0';
y(0).raill <="'0';
y(1).rail0 <="'0';
y(1).raill <='0";
y(2).rail0 <="'0';
y(2).raill <='0";
y(3).rail0 <="'0";
y(3).raill <='0';
wait until ko'event and ko ="'1";
if (y_temp(3).raill ='1'and y_temp(2).raill ='1"' and y_temp(1).raill ="'1'
'1") then

X <= X_next;
else

X <=X temp;
end if;
y <=y_next;

44

wait for O ns;

end loop;
wait;
end process;

OUTPUTS: process

variable ss: side;

variable bw: width := 6;

variable I: line;
variable tm: time;
variable once: bit :='0";

- file t: text is out "/home/bsparkma/Senior_Thesis/ModelSim/t.txt";

variable j: integer := 0;

begin
-- ki.rail0 <="'0";
while (true) loop
ki<="1";
wait until s'event and is_data(s);

foriin 0 to 7 loop
if (s(i).raill /=s_calc_array(j)(i)) then
incorrect <="'1";
end if}
end loop;

if (once ='0") then
once :='1";
else
-- write(l, now - tm, ss, bw);
-- writeline(t, 1);
end if}
tm := now;
ki <="0";
wait until s'event and is_null(s);
=it
end loop;
end process;

end TESTBENCH,;

configuration CFG_TB_MULT4x4 of TB_MULT4x4 is
for TESTBENCH
for UUT: MULT4x4 -- 1n

45

end for;}
end for;
end;
wait until s'event and is_data(s);

for iin 0 to 7 loop
if (s(i).raill /= s_calc_array(j)(i)) then
incorrect <="'1";
end if;
end loop;

if (once ='0") then
once :="'1";
else
-- write(l, now - tm, ss, bw);
- writeline(t, 1);
end if;
tm = now;
ki <="0";
wait until s'event and is_null(s);
=it
end loop;
end process;

end TESTBENCH;

configuration CFG_TB_MULT4x4 of TB_MULT4x4 is
for TESTBENCH
for UUT: MULT4x4 -- 1n
end for;{Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std logic unsigned.all;
use work.ncl_signals.all;
use work.dual_rail.all;

use work.functions.all;
use std.textio.all;

entity TB. MULT4x4 is

end;

architecture TESTBENCH of TB. MULT4x4 is
signal x, y, x_temp, x_next, y temp, y next: DUAL RAIL LOGIC_VECTOR(3

downto 0);

46

signal s: DUAL RAIL LOGIC_VECTOR(7 downto 0);

signal xy calc: std_logic_vector(7 downto 0) := "00000000";
signal ki, ko, reset: STD_LOGIC;
signal cx, cy: DUAL RAIL LOGIC VECTOR(3 downto 2);
signal incorrect: std_logic :='0";

type output_array is array(0 to 256) of std_logic vector(7 downto 0);
signal s_calc_array: output_array;

component mult4x4 -- 1n
port(x, y: in DUAL_RAIL LOGIC_ VECTOR(3 downto 0);
ki, reset: in STD LOGIC;
s: out DUAL_RAIL _LOGIC_VECTOR(7 downto 0);
ko: out STD_LOGIC);

end component;

begin
UUT: MULT4x4 --_1n
port map(x, v, ki, reset, s, ko);

CALC_ANSWER: process
begin
foriin 0 to 256 loop
s _calc_array(i) <= xy_calc(7 downto 4) * xy_calc(3 downto 0);
xy_calc <=xy calc +'1";
wait for O ns;
end loop;
wait;
end process;

INPUTS: process
begin
--reset <="'0";
reset <="'1";
wait until ko'event and ko ="'1";
reset <="'0";

x(0).rail0 <="'1";
x(0).raill <='0";
x(1).rail0 <="1";
x(1).raill <='0";
x(2).rail0 <="'1";
x(2).raill <="'0';
x(3).rail0 <="'1";
x(3).raill <='0";

47

loop

y(0).rail0 <="1";
y(0).raill <="0";
y(1).rail0 <="1";
y(1).raill <="'0";
y(2).rail0 <="1";
y(2).raill <="'0";
y(3).rail0 <="1";
y(3).raill <="0";

wait for 0 ns;

while (x(3).raill ='0' or x(2).raill ='0' or x(1).raill ='0' or x(0).raill

wait until ko'event and ko ='0";

cy(2) <= y(0) and y(1);
cy(3) <= y(0) and y(1) and y(2);

cx(2) <= x(0) and x(1);
cx(3) <= x(0) and x(1) and x(2);

wait for O ns;

y_temp <=y;

y_next(0) <= not(y(0));

y_next(1) <= y(1) xor y(0);

y_next(2) <= cy(2) xor y(2);

y_next(3) <= cy(3) xor y(3);

X_temp <=Xx;

x_next(0) <= not(x(0));
x_next(1) <= x(1) xor x(0);
x_next(2) <= cx(2) xor x(2);
x_next(3) <= cx(3) xor x(3);

x(0).rail0 <='0";
x(0).raill <="'0';
x(1).rail0 <="'0";
x(1).raill <='0';
X(2).rail0 <="'0";
x(2).raill <='0";
x(3).rail0 <="'0";
X(3).raill <="'0';
y(0).rail0 <="0';
y(0).raill <="'0";
y(1).rail0 <='0";
y(1).raill <='0";
y(2).rail0 <='0";

48

lO')

y(2).raill <='0";
y(3).rail0 <="'0';
y(3).raill <="'0";
wait until ko'event and ko ="'1";
if (y temp(3).raill = '1' and y temp(2)raill = '1' and
y_temp(1).raill ='1'and y_temp(0).raill ="'1") then
X <=X_next;
else
X <=Xx_temp;
end if;
y <=y_next;
wait for O ns;

end loop;

while (x(3).raill ='1" or x(2).raill ='1" or x(1).raill ='1" or x(0).raill ="'1")
loop

wait until ko'event and ko ='0";

cy(2) <= y(0) and y(1);
cy(3) <= y(0) and y(1) and y(2);

cx(2) <= x(0) and x(1);

cx(3) <= x(0) and x(1) and x(2);
wait for 0 ns;

y_temp <=y;

y_next(0) <= not(y(0));
y_next(1) <= y(1) xor y(0);
y_next(2) <= cy(2) xor y(2);
y_next(3) <= cy(3) xor y(3);

X_temp <= X;

x_next(0) <= not(x(0));
x_next(1) <=x(1) xor x(0);
X_next(2) <= cx(2) xor x(2);
x_next(3) <= cx(3) xor x(3);

x(0).rail0 <="'0";
x(0).raill <='0";
x(1).rail0 <='0";
x(1).raill <="'0';
X(2).rail0 <="'0';
x(2).raill <='0";
X(3).rail0 <="'0';
x(3).raill <='0";
y(0).rail0 <="'0";
y(0).raill <="'0';

49

y(1).rail0 <="0';
y(1).raill <='0";
y(2).rail0 <="'0";
y(2).raill <="'0';
y(3).rail0 <="'0';
y(3).raill <='0';
wait until ko'event and ko ="'1";
if (y_temp(3).raill ='1'and y_temp(2).raill ='l' and y temp(1).raill ="1"
and y_temp(0).raill ='1") then
X <= X_next;
else
X <=x_temp;
end if;
y <=y_next;
wait for 0 ns;

end loop;
wait;
end process;

OUTPUTS: process
variable ss: side;
variable bw: width := 6;
variable 1: line;
variable tm: time;
variable once: bit :='0";
-- file t: text is out "/home/bsparkma/Senior Thesis/ModelSim/t.txt";
variable j: integer := 0;
begin
- ki.rail0 <="0";
while (true) loop
ki <="1';
wait until s'event and is_data(s);

foriin 0 to 7 loop
if (s(i).raill /= s_calc_array(j)(i)) then
incorrect <="'1";
end if;
end loop;

if (once ="'0") then

once :='1";
else
-- write(l, now - tm, ss, bw);
-- writeline(t, 1);
end if;

50

tm ;= now;
ki<='0";
wait until s'event and is_null(s);
J =
end loop;
end process;
end TESTBENCH;

configuration CFG_TB _MULT4x4 of TB. MULT4x4 is
for TESTBENCH
for UUT: MULT4x4 --_1n
end for;}
end for;
end;

51

B. VERILOG FILE

module mult4x4 (vdd, gnd, x 3 RAIL1, x 3 RAILO, x 2 RAILI, x 2 RAILO, x 1 _RAILI,
x_1__RAILO, x 0 _RAILI1, x 0 RAILO,y 3 RAILIl, y 3 RAILO, 2 RAILL, y 2 RAILO,
y_1_RAIL1, y 1__RAILO, y 0 RAILI, y_0_ RAILO, ki, reset, s_ 7 RAILI1, s 7 RAILO,
s 6 RAILI, s 6 RAILO, s S RAILI, s 5 RAILO, s 4 RAILI, s 4 RAILO,
s 3__RAIL1,s_3_RAILO,s 2 RAILl, s 2 RAILO,s 1_RAILI, s_1__RAILO, s 0_ RAILI,
s 0 RAILO,ko);
inout vdd, gnd; inputx 3 RAILIL;

inputx 3 RAILO;

inputx 2 RAILI;

inputx 2 RAILO;

inputx_1_RAIL1;

inputx_1 RAILO;

inputx 0 RAIL1;

inputx_0 RAILO;

inputy 3 RAIL1;

inputy 3 RAILO;

inputy 2 RAILI;

inputy 2 RAILO;

inputy 1 RAIL1;

inputy 1 RAILO;

inputy 0 RAIL1;

inputy 0 RAILO;

input ki ;

input reset ;

outputs 7 RAILL ;

outputs_7_ RAILO;

outputs_6 _RAIL1;

outputs 6 RAILO ;

outputs_5_ RAIL1;

outputs 5 RAILO;

outputs 4 RAILI ;

outputs 4 RAILO;

outputs 3 RAILI1;

outputs_3_ RAILO;

outputs 2 RAILI;

outputs_ 2 RAILO;

outputs 1 RAILI ;

outputs 1 RAILO;

outputs 0 RAIL1;

outputs_ 0 RAILO;

output ko ;

wire dil_7_RAIL1, dil 7_RAILO, dil 6 RAILl, dil 6 RAILO, dil_ 5 RAILIL,
dil_5_ RAILO, dil_4_ RAIL1, dil_4 RAILO, dil_3__RAILI, dil_3_ RAILO, dil_2 RAILI,
dil_2_ RAILO, dil_I__RAIL1, dil_1_RAILO, dil_0_RAILI, dil_0_ RAILO, di2_7_ RAILI,
di2_7__RAILO, di2_6 RAIL1, di2 6 RAILO, di2 5 RAIL1, di2_ 5 RAILO, di2 4 RAILI,
di2 4 RAILO, di2_3_RAILI, di2 3_RAILO, di2 2 RAILI, di2 2 RAILO, di2 1_RAILI,
di2 1__RAILO, di2_ 0__RAIL1, di2 0 RAILO, dol_7 RAILI, dol 7_RAILO, dol_6_ RAILI,
dol_6_ RAILO, dol_5_ RAILI, dol_5 RAILO, dol 4 RAILl, dol_4_ RAILO, dol 3 RAILI,
dol_3_RAILO, dol_2 RAILI, dol 2 RAILO, dol 1 _RAILI, dol 1 _RAILO, dol 0 RAILI,

dol 0 RAILO, do2_7_RAILI, do2 7 _RAILO;

52

wire do2 6 RAILI, do2 6 RAILO, do2 5 RAILI, do2 5 RAILO, do2 4 RAILI,

do2 4 RAILO, do2 3_RAILI, do2 3 RAILO, do2 2 RAIL1, do2 2 RAILO, do2 1__RAILL,
do2_1_RAILO, do2_0_RAILI1, do2 0_RAILO, kod 7, kod_6, kod 5, kod 4, kod 3, kod 2, kod 1,
kod 0, kol, ko2, kil, ki2, sl, s2, COMP 11 1, COMP_11 2, SELECT_INPUT dl,
SELECT_INPUT d3, SELECT INPUT_r0, SELECT INPUT rl, SELECT_INPUT r2,
SELECT INPUT r3, SELECT OUTPUT _dl1, SELECT OUTPUT d3, SELECT OUTPUT 10,

SELECT OUTPUT rl, SELECT_OUTPUT_r2, SELECT_OUTPUT _r3;

/fendofwire

wire buffwire0_0ko, buffwirel_1kos00seq;

wire buffwire0_Oreset, buffwirel_Oreset, buffwire2_lreset, buffwire3_2reset, buffwire2_Iresets00seq;
wire buffwire0_0s2, buffwirel 1s2s00seq;

wire buffwire0 0s1, buffwirel 1s1s00seq;

wire buffwire0_0ki, buffwirel_1kis00seq;

wire buffwire0 Okol, buffwirel 1ko1s00seq;

wire buffwire0_0ko2, buffwirel_1ko2s00seq;

multdx4_1n COMBI1 (.vdd(vdd), .gnd(gnd), .x 3 RAIL1 (dil_7_RAILI), .x 3_RAILO

(di1_7_ RAILO0), x_2 RAILI (dil 6 RAILI), .x 2 RAILO (dil_6_ RAIL0O), .x 1 RAILI (
dil 5 RAIL1), .x_1_RAILO (dil 5 RAILO), .x_0_ RAIL1 (dil 4 RAIL1), x 0 RAILO
(dil_4_RAILO), .y 3 RAILI (dil_3_ RAILI1), .y 3 RAILO (dil_3_ RAIL0), .y 2 RAILI (
dil_2 RAILI1), .y 2 RAILO (dil 2 RAILO), .y_1_RAILI (dil 1_ RAILI), .y_1_ RAILO
(dil_1_RAILO), .y 0 RAILI (dil 0_ RAIL1), .y 0 RAILO (dil_0 RAILO), .ki (kil), .reset
(buffwire0 Oreset), .s 7 RAIL1 (dol 7 RAIL1), .s 7 RAILO (dol 7 RAILO), .s 6 RAIL1 (
dol 6 RAIL1), .s 6 RAILO (dol 6 RAILO), .s_ 5 RAILI (dol 5 RAIL1), s 5 RAILO
(dol_5_RAILO), .s 4 RAILI (dol_4 RAILI), .s 4 RAILO (dol_4_ RAILO), .s_3_ RAILI (
dol 3 RAILI), .s 3 RAILO (dol_3_RAILO), .s 2 RAILI (dol 2 RAILI1), .s 2 RAILO
(dol 2 RAILO), .s_1 RAILI (dol 1_RAILI), .s 1 _RAILO (dol_1_ RAILO), .s 0_ RAIL1 (

dol 0 _RAILI),.s 0 RAILO(dol_0_ RAILO), .ko (kol));
multdx4 In COMB2 (.vdd(vdd), .gnd(gnd), .x 3 RAIL1 (di2_7_ RAILl), .x 3_ RAILO

(di2_7__RAILO), x_2_ RAILI (di2 6 RAIL1), x 2_ RAILO (di2_6 RAILO), x_I_RAILI (
di2 5_RAIL1), x_1__RAILO (di2_5_RAIL0), .x 0_RAIL1 (di2 4 RAIL1), x 0_ RAILO
(di2_4_RAILO), .y 3_RAILI (di2 3_RAIL1), .y 3 RAILO (di2_3__RAILO), .y 2 RAILI (
di2 2_RAIL1), .y 2__RAILO (di2 2_ RAILO), .y 1_RAILI (di2 1_RAIL1), y 1 RAILO
(di2_1__RAILO), .y 0_ RAILI (di2 0__RAILI), .y 0_ RAILO (di2 0_RAILO), ki (ki2), .reset
(buffwire0_Oreset), s 7 RAILI (do2 7 RAILI), .s 7 RAILO (do2 7 RAILO), .s 6 RAILI (
do2 6_RAILI), .s_6_RAILO (do2_6_RAILO), .s_5_RAILI (do2 5_RAIL1), s_5_ RAILO
(do2_5_RAILO), s 4 RAILI (do2 4 _RAILI), s 4 RAILO (do2_4 RAILO), .s 3_ RAILI (
do2 3 _RAILI), s 3_ RAILO (do2_3_ RAILO), .s_2_ RAILI (do2 2_ RAILI), 52 RAILO
(do2_ 2 RAILO), .s_1_ RAILI (do2 1_RAILI), .s 1__RAILO (do2_1__RAILO), .s 0 RAILI (

do2 0_ RAILI),.s 0_ RAILO (do2_0 RAILO), .ko (ko2));

th44x0 COMP g0 (.vdd(vdd), .gnd(gnd), .a (kod _0), .b (kod 1), .c (kod_2), .d (kod_3), .z (
COMP_I1 1));

th44x0 COMP_gl1 (.vdd(vdd), .gnd(gnd), .a (kod 4), .b (kod_5), .c (kod_6), .d (kod_7), .z (
COMP_11 2));

th22x0 COMP_g2 (.vdd(vdd), .gnd(gnd), .a (COMP_I1_1), .b (COMP _l11_2), .z (ko)) ;

th33nx0 SELECT_INPUT g0 (.vdd(vdd), .gnd(gnd), .a (buffwire0_Oko), .b (SELECT_INPUT_d3), .c
(SELECT_INPUT rl) , .Ist (buffwire0_Oreset), .z (s2)) ;

th33dx0 SELECT INPUT gl (.vdd(vdd), .gnd(gnd), .a (buffwire0_Oko), .b (buffwire0 0s2), .
(SELECT_INPUT r2), .rst (buffwire0_Oreset), .z (SELECT_INPUT _d1));

th33nx0 SELECT INPUT g2 (.vdd(vdd), .gnd(gnd), .a (buffwire0_Oko), .b (SELECT_INPUT d1), .c
(SELECT _INPUT r3) , .Ist (buffwire0_Oreset), .z (s1)) ;

th33nx0 SELECT INPUT g3 (.vdd(vdd), .gnd(gnd), .a (buffwire0_Oko), .b (buffwire0_Osl), .
(SELECT_INPUT _r0), .rst (buffwire0_Oreset), .z (SELECT_INPUT _d3));

invx0 SELECT INPUT _i0 (.vdd(vdd), .gnd(gnd), .i (buffwire0_0s2), .zb (SELECT_INPUT _10)) ;

(]

(¢}

53

invx0 SELECT INPUT il (.vdd(vdd), .gnd(gnd), .i (SELECT_INPUT _d1), .zb (SELECT INPUT_rl))

invx0 SELECT _INPUT i2 (.vdd(vdd), .gnd(gnd), .i (buffwire0_0s1), .zb (SELECT_INPUT _r2)) ;

invx0 SELECT _INPUT i3 (.vdd(vdd), .gnd(gnd), .i (SELECT _INPUT _d3), .zb (SELECT_INPUT_r3))

th12x0 MUX OUTPUT struct 7 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_7__RAILO), .b
(do2_7__RAILO), .z(s 7_RAIL0));

th12x0 MUX OUTPUT struct 7 compl (.vdd(vdd), .gnd(gnd), .a (dol_7__RAILI1), .b
(do2_7_RAILI), .z(s 7 RAIL1));

th12x0 MUX OUTPUT struct 6 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_6_RAILO), .b
(do2_6__RAIL0), .z(s 6 RAILO));

th12x0 MUX OUTPUT struct 6 compl (.vdd(vdd), .gnd(gnd), .a (dol_6_ RAILI), .b
(do2_6__RAIL1), .z(s 6 RAILl));

th12x0 MUX_OUTPUT struct 5 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_5_ RAILO), b
(do2_5_RAILO), .z (s 5 RAIL0));

th12x0 MUX OUTPUT struct 5 compl (.vdd(vdd), .gnd(gnd), .a (dol_5_RAILI), b
(do2_5__RAILI), .z(s 5 RAILL));

th12x0 MUX OUTPUT struct 4 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_4 RAILO), .b
(do2_4_RAILO), .z(s 4 RAIL0));

th12x0 MUX OUTPUT struct 4 compl (.vdd(vdd), .gnd(gnd), .a (dol_4_ RAILI), .b
(do2_ 4 RAIL1), .z(s 4 RAILl));

th12x0 MUX OUTPUT _struct 3 comp0 (.vdd(vdd), .gnd(gnd), .2 (dol_3_ RAILO), .b
(do2_3__RAILO), .z (s 3 RAIL0));

th12x0 MUX_OUTPUT _struct 3_compl (.vdd(vdd), .gnd(gnd), .2 (dol_3_RAIL1), .b
(do2_3__RAIL1), .z(s 3__RAIL1));

th12x0 MUX OUTPUT struct 2 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_2_RAILO), .b
(do2_2__ RAILO), .z(s 2 RAIL0));

th12x0 MUX OUTPUT struct 2 _compl (.vdd(vdd), .gnd(gnd), .a (dol_2_RAILI), .b
(do2_ 2 RAILI), .z(s 2 RAIL1));

th12x0 MUX_ OUTPUT struct 1 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_1_RAILO), .b
(do2_1__RAILO), .z (s 1 _RAIL0));

th12x0 MUX_OUTPUT struct 1 compl (.vdd(vdd), .gnd(gnd), .a (dol_1__ RAILI), b
(do2_1_RAIL1), .z (s 1 _RAIL1));

th12x0 MUX OUTPUT struct 0 comp0 (.vdd(vdd), .gnd(gnd), .a (dol_O_RAILO), .b
(do2_0 RAILO), .z (s 0__RAILO));

th12x0 MUX _OUTPUT struct 0 compl (.vdd(vdd), .gnd(gnd), .a (dol_O_RAILI), b
(do2 0 RAILI), .z(s 0 _RAILD);

th33nx0 SELECT_OUTPUT_g0 (.vdd(vdd), .gnd(gnd), .a (buffwire0_0ki), .b (SELECT_OUTPUT _d3),
c(SELECT OUTPUT rl), .rst (buffwire0_Oreset), .z (ki2)) ;

th33dx0 SELECT_OUTPUT gl (.vdd(vdd), .gnd(gnd), .a (buffwire0 Oki), .b (ki2), .c
(SELECT OUTPUT r2), .rst (buffwire0_Oreset), .z (SELECT _OUTPUT d1));

th33nx0 SELECT _OUTPUT g2 (.vdd(vdd), .gnd(gnd), .a (buffwire0_0ki), .b (SELECT_OUTPUT_dl),
< (SELECT_OUTPUT _r3), .rst (buffwire0 Oreset), .z (kil)) ;

th33nx0 SELECT OUTPUT g3 (.vdd(vdd), .gnd(gnd), .a (buffwire0 Oki), .b (kil), .c
(SELECT_OUTPUT 10), .rst (buffwire0_Oreset), .z (SELECT_OUTPUT d3));

invx0 SELECT_OUTPUT _i0 (.vdd(vdd), .gnd(gnd), .i (ki2), .zb (SELECT_OUTPUT 10)) ;

invx0 SELECT OUTPUT il (.vdd(vdd), .gnd(gnd), .i (SELECT OUTPUT dl), .zb
(SELECT_OUTPUT rl));

invx0 SELECT_OUTPUT _i2 (.vdd(vdd), .gnd(gnd), .i (kil), .zb (SELECT _OUTPUT 12));

invx0 SELECT_OUTPUT_i3 (.vdd(vdd), .gnd(gnd), .i (SELECT OUTPUT d3), .zb
(SELECT_OUTPUT r3));

th33nx0 DEMUX_INPUT struct 7 comp ill (.vdd(vdd), .gnd(gnd), .a (x_3_ RAILI), .b
(buffwire0_0sl1), .c (buffwire0 Okol), .rst (buffwire0 Oreset), .z (dil_7 RAIL1));

th33nx0 DEMUX_INPUT struct 7 comp il0 (.vdd(vdd), .gnd(gnd), .2 (x_3_ RAILO), .b
(buffwire0_0s1), .c (buffwire0_Okol), .rst (buffwire0 Oreset), .z (dil_7 RAIL0));

54

th33nx0 DEMUX_INPUT struct_7 comp i21 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0 0ko2), .rst (buffwire0 Oreset), .z (di2 7 RAIL1));
th33nx0 DEMUX INPUT struct 7 comp i20 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0 0ko2), .rst (buffwire0 Oreset), .z (di2_7 RAIL0));
th14bx0 DEMUX_INPUT struct 7 comp kO (.vdd(vdd), .gnd(gnd),
(di1_7__RAILO), .c(di2 7_RAILI1), .d (di2 7__RAILO), .zb (kod_7));
th33nx0 DEMUX_INPUT struct 6 comp_ill (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0_Okol), .rst (buffwire0_Oreset), .z (dil_ 6 RAIL1));
th33nx0 DEMUX_INPUT struct 6 comp il0 (.vdd(vdd), .gnd(gnd),
(buffwire0 0sl), .c (buffwire0 Okol), .rst (buffwire0 Oreset), .z (dil 6 RAIL0));
th33nx0 DEMUX INPUT struct 6 comp_i21 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0 _0ko2), .rst (buffwire0_Oreset), .z (di2_ 6 RAIL1));
th33nx0 DEMUX_INPUT struct 6 _comp_i20 (.vdd(vdd), .gnd(gnd),
(buffwire0 0s2), .c (buffwire0_0ko2), .rst (buffwire0_Oreset), .z (di2 6 RAIL0));
th14bx0 DEMUX_INPUT struct 6 comp kO (.vdd(vdd), .gnd(gnd),
(dil_6__ RAILO0), .c(di2_6_RAILI1), .d(di2 6 RAILO), .zb (kod_6));
th33nx0 DEMUX INPUT struct 5 comp_ill (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0_Okol), .rst (buffwire0 Oreset), .z (dil 5 RAIL1));
th33nx0 DEMUX_INPUT struct 5 _comp_i10 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0_0ko1), .rst (buffwire0 Oreset), .z (dil_5 RAIL0));
th33nx0 DEMUX_INPUT struct 5_comp_i21 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0_0ko2), .rst (buffwire0 Oreset), .z (di2_ 5 RAIL1));
th33nx0 DEMUX INPUT struct S comp_i20 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0 0ko2), .rst (buffwire0 Oreset), .z (di2_ 5 RAILO0));
th14bx0 DEMUX_INPUT struct 5 comp kO (.vdd(vdd), .gnd(gnd),
(di1_5_ RAILO), .c(di2_5_ RAIL1), .d (di2_5_RAILO), .zb (kod_5));
th33nx0 DEMUX INPUT struct 4 comp_ill (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0 Okol), .rst (buffwire0 Oreset), .z (dil 4 RAIL1));
th33nx0 DEMUX_INPUT struct 4 comp _il0 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0_Okol), .rst (buffwire0 Oreset), .z (dil_4 RAIL0));
th33nx0 DEMUX INPUT struct 4 comp_i21 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0 0ko2), .rst (buffwire0_Oreset), .z (di2 4 RAIL1));
th33nx0 DEMUX_INPUT struct 4 comp_i20 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0_0ko2), .rst (buffwireQ Oreset), .z (di2 4 RAIL0));
th14bx0 DEMUX_INPUT struct 4 comp kO (.vdd(vdd), .gnd(gnd),
(dil_4__ RAILO), .c(di2_4__RAIL1), .d (di2_4_RAILO0), .zb (kod_4));
th33nx0 DEMUX_INPUT struct 3_comp ill (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0_0kol), .rst (buffwire0 Oreset), .z (dil_ 3 RAIL1));
th33nx0 DEMUX_INPUT struct 3_comp_il0 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0_0kol), .rst (buffwire0 Oreset), .z (dil_3 RAIL0));
th33nx0 DEMUX_INPUT struct 3 _comp _i21 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0_0ko2), .rst (buffwire0 Oreset), .z (di2_3 RAIL1));
th33nx0 DEMUX_INPUT struct 3_comp i20 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0_0ko2), .rst (buffwire0_Oreset), .z (di2_3 RAIL0));
th14bx0 DEMUX_INPUT struct 3_comp kO (.vdd(vdd), .gnd(gnd),
(dil_3__ RAILO), .c(di2_3_ RAIL1), .d (di2_3_RAILO0), .zb (kod 3));
th33nx0 DEMUX_INPUT struct 2 comp_ill (.vdd(vdd), .gnd(gnd),
(buffwire0_0s1), .c (buffwire0 _Okol), .rst (buffwirel Oreset), .z (dil 2 RAILI1));
th33nx0 DEMUX_INPUT struct 2 comp_il0 (.vdd(vdd), .gnd(gnd),
(buffwire0_0sl1), .c (buffwire0_0kol), .rst (buffwirel_Oreset), .z (dil_2_RAIL0));
th33nx0 DEMUX INPUT struct 2 comp i21 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0_0ko2), .rst (buffwirel_Oreset), .z (di2_ 2 RAILI));
th33nx0 DEMUX_INPUT struct 2_comp i20 (.vdd(vdd), .gnd(gnd),
(buffwire0_0s2), .c (buffwire0 0ko2), .rst (buffwirel Oreset), .z (di2 2 RAIL0));
th14bx0 DEMUX_INPUT struct 2 comp kO (.vdd(vdd), .gnd(gnd),
(dil_2__RAILO), .c(di2_2_RAIL1),.d(di2 2 RAILO), .zb (kod_2));

55

.a (x 3__RAIL),
.a (x_3__RAILO),
.a (dil_7__RAIL1),
a (x_2__RAILD),
.a (x_2_ RAILO),
.a (x_2_ RAILI),
.2 (x_2_ RAILO),
.a (dil_6_ RAIL1),
.a (x 1 RAILD),
.a (x_1 RAILD),
a (x_1_RAIL1),
.a (x_1__RAILO),
.a (dil_5_RAILl),
.a (x 0 RAIL1),
.a (x 0__RAILO),
.a (x 0 _RAILI),
.a (x 0 RAILO),
a (dil_4_RAIL1),
.a (y_3__RAILI),
.2 (y_3_RAILO),
.2 (y_3_ RAILI),
.a (y_3_RAILO),
.a (dil_3__RAILI),
.2 (y_2_ RAILI),
.a (y_2_RAILO),
.a (y_2_RAILY),
.a (y_2_ RAILO),

a (dil_2_ RAILI),

th33nx0 DEMUX INPUT struct 1 comp i1l (.vdd(vdd), .gnd(gnd), .a (y_l1_ RAILI),
(buffwire0 0sl), .c (buffwire0_Okol), .rst (buffwirel_Oreset), .z (dil_1__RAIL1));
th33nx0 DEMUX_INPUT struct_1 comp_il0 (.vdd(vdd), .gnd(gnd), .a (y_l1_ RAILO),
(buffwire0 0sl1), .c (buffwire0_0kol), .rst (buffwirel_Oreset), .z (dil_1_ RAIL0));
th33nx0 DEMUX_INPUT struct 1_comp_i21 (.vdd(vdd), .gnd(gnd), .a (y_1__ RAILI),
(buffwire0_0s2), .c (buffwire0_0ko2), .rst (buffwirel_Oreset), .z (di2_1_ RAIL1));
th33nx0 DEMUX_INPUT struct_1_comp_i20 (.vdd(vdd), .gnd(gnd), .a (y_1_ RAILO),
(buffwire0 0s2), .c (buffwire0 0ko2), .rst (buffwirel Oreset), .z (di2 1 _RAILO0));
th14bx0 DEMUX_INPUT struct 1 comp kO (.vdd(vdd), .gnd(gnd), .a (dil_1__ RAILI),
(dil 1 _RAILO), .c(di2_1__RAIL1),.d (di2_1__RAILO), .zb (kod 1));
th33nx0 DEMUX_INPUT struct 0 comp_ill (.vdd(vdd), .gnd(gnd), .a (y_O_ RAIL1),
(buffwire0 0s1), .c (buffwire0_Okol), .rst (buffwirel_Oreset), .z (dil_0__ RAIL1));
th33nx0 DEMUX_INPUT struct 0 comp i10 (.vdd(vdd), .gnd(gnd), .a (y_O_ RAILO),
(buffwire0 0sl1), .c (buffwire0_Okol), .rst (buffwirel Oreset), .z (dil_0 RAILOQ));
th33nx0 DEMUX_INPUT struct_ 0_comp_i2! (.vdd(vdd), .gnd(gnd), .a (y_O_ RAILI),
(buffwire0 0s2), .c (buffwire0_0ko2), .rst (buffwirel Oreset), .z (di2 0 RAIL1));
th33nx0 DEMUX INPUT struct 0 comp i20 (.vdd(vdd), .gnd(gnd), .a (y_O_ RAILO),
(buffwire0 0s2), .c (buffwire0 0ko2), .rst (buffwirel Oreset), .z (di2 0 RAILO));
th14bx0 DEMUX INPUT struct 0 comp kO (.vdd(vdd), .gnd(gnd), .a (dil_O__ RAILI),
(dil_0__RAILO), .c(di2_0 RAILI),.d(di2_0__RAILO), .zb (kod_0)) ;
invert_a Gbuff ko 0 (.vdd(vdd), .gnd(gnd), .a(buffwirel 1kos00seq), .z(buffwire0_0ko));
invert_a Gbuff ko_1 (.vdd(vdd), .gnd(gnd), .a(ko), .z(buffwirel 1kos00seq));
buffer_c Gbuff reset 0 (.vdd(vdd), .gnd(gnd), .a(buffwire2_Ireset), .z(buffwire0_Oreset));
invert_a Gbuff reset_1 (.vdd(vdd), .gnd(gnd), .a(buffwire2_lresets00seq), .z(buffwirel_Oreset));
invert_a Gbuff reset 2 (.vdd(vdd), .gnd(gnd), .a(buffwire2 Ireset), .z(buffwire2_lresets00seq));
invert_a Gbuff reset_4 (.vdd(vdd), .gnd(gnd), .a(buffwire3 2reset), .z(buffwire2_lreset));
invert_a Gbuff reset 5 (.vdd(vdd), .gnd(gnd), .a(reset), .z(buffwire3 2reset));
invert_c Gbuff s2 0 (.vdd(vdd), .gnd(gnd), .a(buffwirel 1s2s00seq), .z(buffwire0_0s2));
invert_a Gbuff s2 1 (.vdd(vdd), .gnd(gnd), .a(s2), .z(buffwirel 1s2s00seq));
invert_c Gbuff sl1_0 (.vdd(vdd), .gnd(gnd), .a(buffwirel_1s1s00seq), .z(buffwire0_0s1));
invert_a Gbuff sl _1 (.vdd(vdd), .gnd(gnd), .a(s1), .z(buffwirel 1s1s00seq));
invert_a Gbuff ki 0 (.vdd(vdd), .gnd(gnd), .a(buffwirel 1kisO0seq), .z(buffwire0_O0ki));
invert_a Gbuff ki_1 (.vdd(vdd), .gnd(gnd), .a(ki), .z(buffwirel 1kis00seq));
invert_c Gbuff kol 0 (.vdd(vdd), .gnd(gnd), .a(buffwirel _1ko1s00seq), .z(buffwire0_0ko1));
invert_a Gbuff kol 1 (.vdd(vdd), .gnd(gnd), .a(kol), .z(buffwire]l 1ko1s00seq));
invert_c Gbuff ko2 0 (.vdd(vdd), .gnd(gnd), .a(buffwirel 1ko2s00seq), .z(buffwire0_0ko2));
invert_a Gbuff ko2 1 (.vdd(vdd), .gnd(gnd), .a(ko2), .z(buffwirel 1ko2s00seq));
endmodule

56

C. ADDITIONAL-MULTIPLIER VHDL FILES

C.1 Two-Multiplier Design: mult4x4 1stage2.vhd

library ieee;
use ieee.std_logic 1164.all;
use work.ncl_signals.all;

entity mult4x4 1In2 is
port(x, y: in dual_rail_logic_VECTOR(3 downto 0);
ki, reset: in std_logic;
s: out dual _rail logic VECTOR(7 downto 0);
ko: out std_logic);
end;

architecture BEHAVIOR of mult4x4_1n2 is

signal di2: dual_rail_logic_vector(7 downto 0);
signal ki2: std_logic;

component mult4x4_In
port(x, y: IN dual_rail logic vector (3 downto 0);
ki, reset: IN std_logic;
s: OUT dual rail _logic vector (7 downto 0);
ko: OUT std_logic);
end component;

begin

U0: multd4x4_1n

port map(x, y, ki2, reset, di2, ko);

Ul: mult4x4_1n

port map(di2(7 downto 4), di2(3 downto 0), ki, reset, s, ki2);
end BEHAVIOR;

C.2 Four-Multiplier Design: mult4x4 1stage4.vhd

library ieee;
use ieee.std_logic_1164.all;
use work.ncl_signals.all;

entity mult4x4 1n4 is
port(x, y: in dual_rail_logic VECTOR(3 downto 0);
ki, reset: in std_logic;
s: out dual_rail_logic VECTOR(7 downto 0);
ko: out std_logic);
end;

architecture BEHAVIOR of mult4x4 1n4 is

57

signal di2: dual_rail logic vector(7 downto 0);
signal ki2: std_logic;

component mult4x4 _1n2
port(x, y: IN dual_rail_logic_vector (3 downto 0);
ki, reset: IN std_logic;
s: OUT dual_rail _logic_vector (7 downto 0);
ko: OUT std_logic);
end component;

begin

U0: mult4x4_1n2

port map(x, y, ki2, reset, di2, ko);

Ul: mult4x4_1n2

port map(di2(7 downto 4), di2(3 downto 0), ki, reset, s, ki2);
end BEHAVIOR;

58

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2011

	Reducing energy usage of NULL Convention Logic circuits using NULL Cycle Reduction combined with supply voltage scaling
	Brett Sparkman
	Recommended Citation

	tmp.1441049895.pdf.etiBI

