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ABSTRACT 

 

The importance of low voltage and low powered electronics is increasing with advances in 

medical electronics. This branch of electronics specifically requires low voltage and low power 

to make efficient innovative medical equipment. Low power electronics are also desirable 

because it conserves energy and power. This paper proposes a design of a differential in – 

differential our amplifier that uses a bulk-driven differential pair for the input pair. In addition, it 

also used bulk-driven current mirrors for the tail current sink and the active loads. The bulk-

driven technique helps to achieve the low voltage design. 

 

90nm CMOS technology was considered for the design but at the end SIGE 5AM process was 

chosen as it has low threshold voltage values maintaining good current – voltage characteristics. 

The software Cadence was used to simulate the design. A layout of the amplifier is out of the 

scope of this paper.   

 

A gain of 14 dB was achieved using a rail-to-rail voltage of 1V (0.5V to -0.5). The power 

dissipation was 102uW using 5pF capacitive loads. The values of the calculations match the 

values of the simulations quite well. Some of the differences can be explained by the lack of 

accurate knowledge of the some of the process parameters for the SIGE 5AM process. Overall, 

the design achieved its goals and a successful low voltage and low power fully differential 

amplifier was created with respectable gain. This amplifier can be used as an input stage for an 

operational amplifier. 
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INTRODUCTION 

 

Low voltage and low power operation has become popular because of the various low power 

medical applications. This paper proposes a design of a fully differential amplifier that will 

operate under supply voltages 0.5V to -0.5Vand have a power consumption of about 100uW.  

The very low voltages and power dissipation posed challenges when regular design techniques 

were used. Thus bulk-driven MOSFETS were used to achieve results with low voltages.  

 

The design consists of an input pair and current mirrors that are bulk-driven. This paper includes 

a background of the theory of how the bulk-driven MOSFET operation. In addition, the 

calculations for the amplifier to achieve desired results are shown. Simulations for the design 

were done in the MSCAD lab, using the software Cadence. SIGE5AM process was used because 

of the 0.5 threshold voltage that was important to the design.  

 

The paper then compares the simulated and calculated values and discusses the similarities and 

differences in the design. Finally, a conclusion is made about the success of the design. 
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THEORETICAL BACKGROUND 

 

BULK-DRIVEN MOSFET: 

The challenge behind this design was to build an amplifier that operates at a very low voltage. 

The threshold voltage is a limitation to design analog circuits at low voltages. The MOSFET is 

required to be turned on to perform any sort of signal processing. Thus the power supplies must 

satisfy the following requirement 

€ 

VDD + VSS ≥VGS =VDS + VT  

for strong inversion operation. In addition, when the MOSFET is gate-driven, the supply voltage 

requirement becomes 

€ 

VDD + VSS ≥VGS =VDS + VT +VSIGNAL  

To avoid this problem, the design in this paper uses a bulk driven MOSFET, which removes the 

voltage overhead associated with the threshold voltage from the signal path. 

A bulk driven MOSFET works like a JFET as a depletion device. Figure 1 shows the cross 

section of an n-channel MOSFET.  

 

Figure 1: Cross section of n-channel MOSFET 

770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 7, JULY 1998

Fig. 1. Cross section of n-channel MOSFET (p-well CMOS technology).

Fig. 2. Measured linear versus for the bulk-driven MOSFET and
for the standard MOSFET.

flowing from the source to drain is modulated by the reverse

bias on the bulk–channel junction. The result is a junction

field-effect transistor with the bulk as the signal input (gate).

Consequently, a high-input impedance depletion-mode device

results.

To understand the bulk-driven MOSFET better, consider the

experimental transconductance characteristics shown in Fig. 2.

This plot shows drain current versus bulk-source voltage

( 1.5 V) and drain current versus gate-source voltage

( 0 V). Although the is large, smaller values of

simply reduce the value of ( 0 V) for the

JFET. It is appropriate to use a JFET parameter such as

to describe the bulk-driven MOSFET given its depletion-mode

behavior.

First-order theory [6] gives the dependence of the drain

current, , of a MOSFET as

(3)

and

(4)

where

(5)

and

(6)

The parameters in (5) are identical with standard SPICE

parameters for MOSFET’s. However, to describe bulk-source

operation, the term in (3) and (4) is expanded

(7)

and

(8)

These equations are used for the theoretical predictions of the

bulk-driven MOSFET’s drain current but test results suggest

that they need to be reexamined to permit better correlation

between experimental and theoretical results. We have found

that the Berkeley short-channel insulted-gate (BSIM) model

[7] can model bulk-source operation reasonably well. How-

ever, the BSIM model tends to over estimate the bulk current

as the bulk-source junction is forward biased.

The bulk-driven MOSFET has several important advan-

tages. The obvious advantage is the depletion characteristic

which allows zero, negative, and even small positive values of

bias voltage to achieve the desired dc currents. This will lead

to larger input common-mode ranges that could not otherwise

be achieved at low power supply voltages. Another interesting

advantage of the bulk-driven MOSFET is the use of the

poly gate to modulate the bulk-driven MOSFET. Because the

gate can totally shutoff the channel, the on/off ratio of the

bulk-driven MOSFET modulated by the gate is very large.

Furthermore, throughout extensive experimental investigation

of bulk-driving the MOSFET, latch-up has not appeared to be

a problem.

Matching between individual bulk-driven MOSFET’s is

similar to that of standard MOSFET’s. As the bulk-driven

MOSFET’s operation is depletion-mode, it is appropriate to

describe it with JFET parameters and (pinch-off volt-

age). Experimental data shows that the bulk-driven MOSFET’s

and varies by 4.2% and 1%, respectively, while

for the same transistors the varies by 2.4% and by

2.9%. A potential advantage of the bulk-driven MOSFET

is that the small signal transconductance, , can in theory

be larger than the MOSFET’s transconductance, . This

is demonstrated by examining the expression for given

below:

(9)

The bulk-driven MOSFET transconductance can exceed the

gate-driven MOSFET transconductance if

V (10)

Of course, there may be appreciable current flowing in the

bulk-source junction under these conditions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 3, 2009 at 16:58 from IEEE Xplore.  Restrictions apply.
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An appropriate dc voltage is applied to the gate-source potential to turn on the MOSFET. The 

drain is connected in the usual way and the signal is applied between the bulk and the source. 

The reverse bias on the bulk-channel junction is used to modulate the current flowing from 

source to drain. This results in a JFET with the bulk as a signal input.  

Advantages: 

The depletion characteristics allow negative, zero and small positive bias voltages to achieve 

desired dc currents. This leads to a larger input common mode range that could not be achieved 

otherwise at low supply voltages.   

Equations: 

The large signal equation for the MOSFET is 

€ 

iD =
1
2
KN
' W
L

VGS −VTO − γ 2φF − vBS + 2φF[ ]
2

    
 

The small signal transconductance for a bulk driven MOSFET is as follows 

€ 

gmbs =
γ 2KN

' W
LID

2 2φF −VBS  

When VBS is slightly forward biased, gmbs increases and can be greater than the gate 

transconductance.  
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BULK-DRIVEN DIFFERENTIAL PAIR 

An example of a bulk driven input differential pair is shown in Figure 2. A similar model will be 

used for the design proposed in this paper.  

 

Figure 2: NMOS bulk driven differential pair 

The diagram indicates that the gates of both MOSFETS are tied to the positive power supply to 

confirm that an inversion layer is formed. A differential voltage signal is applied between the 

bulk terminals of transistors M1 and M2. The differential input pair causes the currents between 

M1 and M2 to act as follows 

€ 

i1 − i2 =Gmbsvin  

Gmb is the differential transconductance when the bulk terminal is used as the input.  

€ 

Gmb =
γgm

2 2φF −Vcm −VS

 

Vcm is the common mode voltage and VS is the source coupled node voltage. Since the bulk 

source junction can be both reverse or forward biased, the Vcm can move rail to rail. For forward 

biasing, the threshold voltage reduces, causing VS to follow VCM. For a NMOS pair, as VCM 

moves beyond mid-supply towards VDD, VS also moves toward VDD.  

772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 7, JULY 1998

Fig. 3. Schematic for bulk-driven differential pair measurements.

Because the source-coupled MOSFET’s have isolated individ-

ual wells, a differential voltage signal is applied between the

bulk terminals of M1 and M2. The differential input signal,

via the bulk-to-channel transconductance action of the pair,

causes current to be steered between M1 and M2 such that

(16)

where is the differential transconductance and is the

differential input voltage signal. Using first-order theory, the

differential transconductance of the pair is described by

(17)

where is the voltage common to both bulk terminals

(common-mode), is the source-coupled node voltage, and

is the tail current biasing the differential pair. can

move rail-to-rail, since the MOSFET’s bulk-source junction

is amenable to both reverse and forward biases. Within a 1-

V supply, cannot forward-bias the bulk-source junctions

enough to strongly turn-on the parasitic lateral and vertical

BJT’s (shown in Fig. 1) thereby compromising the pair’s input

impedance. The variation in threshold voltage with common-

mode voltage makes this possible. Threshold voltage reduces

for forward-biasing of the bulk-source junction, and as a result

follows to a degree. For a nMOS pair, as moves

beyond mid-supply toward , the source-coupled node also

moves toward .

Measured data on a bulk-driven differential pair fabricated

in 2- m p-well CMOS technology is shown in Figs. 4 and

5. The circuit schematic for all the measurements is shown

in Fig. 3. In all cases, the aspect ratios of M1 and M2

are 400 m/2 m with the 1-V supply voltage realized by

0.5 V and 0.5 V. The -substrate is

tied to 0.5 V. For a mid-supply common-mode voltage, the

circuit’s measured transconductance varies from 75 S for

10 A to approximately 310 S for 50 A. For

two tail currents, 40 and 50 A, the bulk-driven differential

pair’s transconductance is measured as a function of common-

mode voltage and plotted in Fig. 4. In Fig. 4 a second-order

Fig. 4. Measured common-mode voltage influence on bulk-driven differen-
tial pair transconductance.

polynomial curve fit to the data is performed, indicated by the

dashed lines. Using the 0 V value of transconductance

of each tail current case as the nominal value, the bulk-driven

differential pair’s transconductance at is 16.3%

below the nominal value for the 40 A case and 16.5% below

nominal for the 50- A case. The BDDP’s transconductance

is 28% above nominal for the 40- A case, and 30% above

nominal for the 50- A case at . This behavior of

as a function of common-mode voltage is predicted by

(17). Taking the derivative of (17) with respect to

(18)

The measurement results demonstrate that an increase in

increases the rate at which changes with . The top-

gate transconductance is greater for the 50- A tail current

case, resulting in more total variation of with than

in the 40- A case.

As mentioned earlier for the nMOS pair (p-well CMOS

technology), the threshold voltage reduces as the ap-

proaches , allowing the source-coupled node voltage

to rise. Measurements of this behavior are shown in Fig. 5

for the same bulk-driven differential pair and tail currents.

Since the largest tail current of 50 A requires the most

, its corresponding is the nearest to , which was

0.5 V in these measurements. For a constant tail current,

the measured data indicates that is approximately a linear

function of . For 50- A tail current, reaches 0 V as

reaches 0.5 V, indicating a 500-mV forward-bias

of each MOSFET’s bulk-source junction, the largest over an

entire common-mode sweep. Even at this extreme condition,

measurements indicate that (the circuit’s positive input bias

current) only reaches 2 nA. In addition, the curves of Fig. 5

become evenly spaced for tail currents greater than 10 A.

This indicates that the nMOS BDDP moves from weak to

strong inversion saturation operation for a tail current between

10 and 20 A.

For a 1-V total supply voltage with the nMOS bulk-

driven differential pair’s gate-coupled node fixed at , the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 3, 2009 at 16:58 from IEEE Xplore.  Restrictions apply.
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BULK-DRIVEN CURRENT MIRRORS 

NMOS 

The differential amplifier designed in this paper uses a very similar current mirror as the one 

shown in the Figure 3.  It is an NMOS bulk input current mirror and is used for the bias current. 

Instead of a gate-drain connection, the mirror has a bulk-drain connection. The bulk of the two 

transistors are tied together and the gates of the MOSFETS are tied to the fixed voltage VDD. The 

latter is done to make sure the voltage between the gate and source is higher than or equal to VT 

in order to form an inversion layer beneath the gate. 

 

Figure 3: Bulk-driven NMOS current mirror 

 

The operation of the mirror is as follows. With a slightly forward biased VBS, the threshold 

voltage is decreased.  

       [1]  

Consequently, 

  [2]   

Figure 3 - NMOS simple, bulk-driven current mirror. 

By solving equation (2) for (VGS1 - VT) and substituting into 
equation (3), the output current expression becomes 

where I3 = K ' W L  

described by 
The input impedance of the bulk-driven current mirror is 

As was mentioned in the previous section, the VBS term is 

positive thereby reducing the argument of the numerator's 
radical. 

The output impedance for the low voltage current mirror 
can be approximated just as i t  is for the standard simple 
current mirror [61, 

1 
rout = ~ 

IDSsat. 

IV. SIMPLE CURRENT MIRROR PERFORMANCE 

The devices in both PMOS simple current mirrors shown 
in Figure 4 were fabricated through MOSIS in a 2pm ii-well 
run. Identical aspect ratios of 2OOpl2p were chosen. M1 and 
M2 are shown connected as a standard s imple  current mirror 

in Figure 4(a). The PMOS bulk-driven current mirror circuit 
is shown in Figure 4(b). For both circuits VDD and Vss were 

k 0.75 V, respectively. 
Output current measurements for both of the current 

mirrors shown in Figure 4 are given i n  Figure 5.  In each 
case, the output node was voltage swept from rail-to-rail for a 
given input current. Iin values of 100 PA, 200 PA, 300 PA, 

40OpA, and SO0 pA were used to generate thc five curvcs 
shown in each of Figure 5's graphs. The gate-driven current 

Figure 4 - (a.) PMOS gate-driven current mirror. (b.) PMOS 
bulk-driven current mirror. 

mirror's output current follows its input current much more 
closely than the bulk-driven mirror. This is to be expected 
since M2's aspect ratio was chosen to match that of M1. Eq. 
(10) reveals that careful selection of unequal device aspect 
ratios will result in Iout values closer in magnitude to Ii,. 

Note also that the bulk-driven mirror's Iout curves are spaced 
closer together than those of the gate-driven mirror. This is 
attributed to M2's drain current now being modulated via its 
bulk-source voltage rather than gate-source voltage. Also 
note that the spacing between the bulk-driven mirror's output 
current curves increases as Iin increases. The Ih2 term in Eq. 

(10) predicts such behavior. For a specific value of Iout and 

M2 aspect ratio, VDS2,sat would be approximately equal for 
both current mirrors. In Table 1 the measurement data is 
compared to the theoretical predictions calculated using Eq. 

(10). MOSIS fabrication parameters were used in these 
calculations. Eq. (10) provides rout predictions with less than 
19% error. 

The slope of the Iout curves is greater for the bulk-driven. 
current mirror compared to the gate-driven current mirror. In 
the bulk-driven case, the maximum possible VSG is applied. 

Since rds for a MOSFET is inversely proportional to gate- 

source voltage, the bulk-driven current mirror's rout is 

expected to be less than that of the gate-driven mirror as it 
was operated here. The same techniques which improve 
current mirror output impedance for the gate-driven case 
should also apply to the bulk-driven current mirror. For 

theory I to measured 

507wA I 11.72 

Table 1. Bulk-driven simple current mirror measured 
pcrl'orniniicc and thcorctical prcdictioiis for V S D ~  = 0.75 V. 

1974 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 18:44 from IEEE Xplore.  Restrictions apply.
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and  

  [3]  

 

The small signal saturation is 

         [4] 

The relationship between Iin and Iout is different for a bulk input mirror compared to a gate input 

mirror. For this current mirror, M1 is operating in the linear region. This condition is imposed by 

M1s bulk drain connection and VDS1 = VDS2. Since the bulk of M1 and M2 are tied, VBS1 = VBS2.  

M1 operates linearly since VDS1 is less than VDS, sat. M2’s drain-source voltage has no such 

restriction and can exceed VDS, sat. Since VBS1 = VBS2, VGS1 – VT = VGS2 – VT. 

By solving equation [2] for VGS1-VT, and substituting in equation [3] the following expression 

for Iout is obtained. Unlike the gate mirror, the currents are not identical. 
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PMOS 

A PMOS bulk driven current mirror works in the same it was described for an NMOS mirror. A 

schematic of PMOS current mirror is shown below. The PMOS current mirror is used for the 

PMOS active loads in the design proposed in this paper. 

 

Figure 4: Bulk-driven PMOS current mirror 

 

 

 

 

 

 

 

 

 

Figure 3 - NMOS simple, bulk-driven current mirror. 

By solving equation (2) for (VGS1 - VT) and substituting into 
equation (3), the output current expression becomes 

where I3 = K ' W L  

described by 
The input impedance of the bulk-driven current mirror is 

As was mentioned in the previous section, the VBS term is 

positive thereby reducing the argument of the numerator's 
radical. 

The output impedance for the low voltage current mirror 
can be approximated just as i t  is for the standard simple 
current mirror [61, 

1 
rout = ~ 

IDSsat. 

IV. SIMPLE CURRENT MIRROR PERFORMANCE 

The devices in both PMOS simple current mirrors shown 
in Figure 4 were fabricated through MOSIS in a 2pm ii-well 
run. Identical aspect ratios of 2OOpl2p were chosen. M1 and 
M2 are shown connected as a standard s imple  current mirror 

in Figure 4(a). The PMOS bulk-driven current mirror circuit 
is shown in Figure 4(b). For both circuits VDD and Vss were 

k 0.75 V, respectively. 
Output current measurements for both of the current 

mirrors shown in Figure 4 are given i n  Figure 5.  In each 
case, the output node was voltage swept from rail-to-rail for a 
given input current. Iin values of 100 PA, 200 PA, 300 PA, 

40OpA, and SO0 pA were used to generate thc five curvcs 
shown in each of Figure 5's graphs. The gate-driven current 

Figure 4 - (a.) PMOS gate-driven current mirror. (b.) PMOS 
bulk-driven current mirror. 

mirror's output current follows its input current much more 
closely than the bulk-driven mirror. This is to be expected 
since M2's aspect ratio was chosen to match that of M1. Eq. 
(10) reveals that careful selection of unequal device aspect 
ratios will result in Iout values closer in magnitude to Ii,. 

Note also that the bulk-driven mirror's Iout curves are spaced 
closer together than those of the gate-driven mirror. This is 
attributed to M2's drain current now being modulated via its 
bulk-source voltage rather than gate-source voltage. Also 
note that the spacing between the bulk-driven mirror's output 
current curves increases as Iin increases. The Ih2 term in Eq. 

(10) predicts such behavior. For a specific value of Iout and 

M2 aspect ratio, VDS2,sat would be approximately equal for 
both current mirrors. In Table 1 the measurement data is 
compared to the theoretical predictions calculated using Eq. 

(10). MOSIS fabrication parameters were used in these 
calculations. Eq. (10) provides rout predictions with less than 
19% error. 

The slope of the Iout curves is greater for the bulk-driven. 
current mirror compared to the gate-driven current mirror. In 
the bulk-driven case, the maximum possible VSG is applied. 

Since rds for a MOSFET is inversely proportional to gate- 

source voltage, the bulk-driven current mirror's rout is 

expected to be less than that of the gate-driven mirror as it 
was operated here. The same techniques which improve 
current mirror output impedance for the gate-driven case 
should also apply to the bulk-driven current mirror. For 

theory I to measured 

507wA I 11.72 

Table 1. Bulk-driven simple current mirror measured 
pcrl'orniniicc and thcorctical prcdictioiis for V S D ~  = 0.75 V. 

1974 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 18:44 from IEEE Xplore.  Restrictions apply.



Huda   11 

DESIGN 

 

A design of a low voltage differential input, differential output amplifier has been proposed in 

this paper. The design uses the application of bulk-driven MOSFETS to turn on MOSFETS with 

rail-to-rail voltage as low as 0.5V to -0.5V.  A block diagram of the amplifier is shown in Figure 

5. 

 

Figure 5: Block diagram for amplifier 

From the diagram it can be seen that it is a popular topology for a differential amplifier has been 

used. However, the challenge lies in achieving an acceptable gain for the low supply voltage. 

A detailed schematic of the actual amplifier designed can be seen in Figure 6. A NMOS bulk-

driven differential pair has been used for the differential input. A bulk-driven NMOS current 

mirror has been used to provide the bias current for the amplifier. Two PMOS active loads are 

used which are bulk connected to a bulk-driven PMOS current mirror. 
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Figure 6: Schematic of the differential in – differential out amplifier 

The gates of the NMOS transistors are tied to VDD and the gates of the PMOS transistors are tied 

to VSS to ensure the formation of an inversion layer beneath the gate. The bulk-driven current 

mirrors were used to reduce the voltage headroom required for the tail current and load. Two 

different bias currents were used – one for the NMOS current mirror and the other for the PMOS 

current mirror.  
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CALCULATIONS 

 

The design needs to meet the following specifications: 

VDD = 0.5V 

VSS = -0.5V 

ITAIL = 90uA 

CL = 5pF 

€ 

Gain =14dB = 5V /V  

The following are process parameters that are approximated using variables from other similar 

processes and experiments. The values used below for KN, KP, VTON, VTOP and lambda, were 

experimentally found by MSCAD lab students. The values of Gamma and Phi were 

approximated using the values for 0.8um CMOS Bulk Process. 

€ 

KN
' =171u AV 2

KN
' = 47u AV 2

VTON = 0.5V
VTOP = −0.5V
λN = 0.1436V −1

λP = 0.3998V −1

γN = 0.4V
1
2

γP = 0.5V
1
2

2φF = 0.6V  
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For the following calculations, VDS for each MOSFET was chosen by the designer to be in the 

linear or saturated region based on the MOSFET. It was also chosen with respect to the voltage 

headroom that was required for the design. From Figure 6, 

 

M3 and M4 

For M3, IBIAS2 = 60uA 

Since M3 is in triode region and M4 is in saturation, the following equation can be used to 

calculate W/L to get an output of 90uA

 

 

 

Now, VBS3 = VDS3 = VBS4. Since M3 is operating in the linear region,  

VDS3 can be less that VGS3-VT 

Let VDS3= 0.11V  

€ 

W
L

=15 when VDS3 = 0.11V and VDS4 = 0.21V  
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M5, M6, M7 

Similarly for the PMOS mirror and load 

When for M6, IBIAS = 30uA and IOUT needs to be 45uA 

€ 

W
L

=10.98 when VSD5 = 0.18V and VSD5,SD6 = 0.45V  

 

M1 and M2 

Since VDS4 of M4 of the NMOSFET current mirror is 0.21V, then  

€ 

For both M1 and M2 
VS1,S2 =VSS +VDS4

VS1,S4 = −0.5 + 0.21= −0.29V
VCM (mid -supply) =VB = 0V
VBS = −0.5 − (−0.29) = 0.21V  

 

 

The design aims for a gain of 12dB, which is approximately 5V/V 

€ 

Gain = gmbs × Rout

Rout =
1

λ2 + λ7( )ID2
=

1
(0.143+ 0.3998)(45 ×10−6)

Rout= 40.9kΩ

gmbs =
Gain
Rout

=
5

40940
=122uS

gmbs =
0.4 2 ×171u ×W L × 45u

2 0.6 − (−0.21)
Therefore,
W2

L2
=19.58

 

! 

gmbs =
" 2KN

' W
LID

2 2#F $VBS
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€ 

f−3dB =
1

2πRoutCL

=
1

2 ×π × 40.9K × 5p
f−3dB = 778kHz

 

 

POWER DISSIPATION 

Power dissipation for rail-to-rail operation of M1, M2, M4, M6, M7 

€ 

PDISS = (VDD + VSS )ID = (0.5 + 0.5)(90uA)
PDISS = 90uW

 

Power dissipation of current mirrors 

For M3 

€ 

PDISS,M 3 = Ibias2 ×VDS3 = 60uA × 0.11V
PDISS,M 3 = 6.6uW

 

For M4 

€ 

PDISS,M 3 = Ibias2 ×VDS3 = 30uA × 0.18V
PDISS,M 3 = 5.4uW

 

Total Power Dissipation: 

€ 

PDISS,TOTAL = 90uW + 5.4uW + 6.6uW =102uW  

 

SLEW RATE 

€ 

SL =
I4
CL

=
90uA
5pF

=18V /us 
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SIMULATIONS 

 

Figure 7: Bias Point Analysis of Circuit 

 

The following results were obtained from the bias point analysis 

VDS for transistors: 

M1& M2: 0.327V 

M4: 0.206V 

M6 & M7: 0.463V 

M3: 0.11V 

M5: 0.183V 

Power dissipated in M1, M2, M3, M4, M5, M6 and M7 

(2)(45.3uA)(0.327V) + (2)(45.3uA)(0.463V) + (90.6uA)(0.206V) + (60uA)(0.183) + 

(30uA)(0.11V) = 104.5uW 
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Figure 8: Schematic of the symbol 

 

Figure 9: Transient analysis of Vinn and Vinp  
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Figure 10: Transient analysis of Voutp Voutn (36.56m-36.14m =420uV, Gain=5.2V/V 

 

Calculating gain from Figures 9 and 10 

Vinp = 50uV 

Vinn = -50uV 

Vinp – Vinn = 100uV 

Voutp = 36.56mV 

Voutn = 36.14mV 

Voutp – Voutn = 420uV 

Gain = 260uV/100uV = 4.2 

Gain in Decibels = 12.46dB 
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Figure 11: Bode Plot of Gain 

 

Gain = 13.95dB 

-3dB frequency = 560.3kHz 

Unity Gain Bandwidth = 2.8MHz 
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Figure 12: Bode plot of Phase 

 

Phase margin = 100 degrees 
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TABULATED RESULTS 

 

TABLE 1: Tabulation of Simulated and Calculated Results 

 Calculated Simulated 

Gain (dB) 14 13.94 

Frequency,  -3dB 778kHz 560kHz 

W/L for M1 and M2 19.5 15u/1u 

W/L for M3 and M4 16.35 10u/1u 

W/L for M5, M6. M7 14.6 10u/1u 

Total Power Dissipated 102W 104.5uW 

Slew Rate 18V/us - 

Phase Margin - 100° 

Unity Gain Bandwidth - 2.7MHz 
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DISCUSSION OF RESULTS 

 

Gain: The gain obtained for both results were almost matched accurately 

 

-3dB frequency: These values were also very similar. The differences can again be attributed to 

the inaccurate process parameters. 

 

W/L of transistor: The results obtained by calculation and simulation for these values were 

slightly off from each other. One possible reason for this to occur could have been the inaccurate 

values of process parameters while calculating the results. Instead of keeping the W/L for 

simulation the same as the W/L in the calculations, The W/L of the simulations were modified to 

get the gain that was required.  

 

Total Power Dissipated: The results obtained for the total power dissipated for simulation and 

calculation were almost exact. 

 

Slew Rate: The slew rate that was calculated was a good value. 

 

Phase Margin and Unity Gain Bandwidth: The simulated value obtained for the phase margin 

was very good. Anything above 60 degrees is good and this result produced 100 degrees. The 

unity gain bandwidth was a little low. The design can be modified to produce a unity gain 

bandwidth of 5Mhz instead of 2.8MHz. 
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CONCLUSION 

 

A fully differential amplifier was designed using bulk-driven MOSFET operation. A bulk-driven 

differential pair was used as the differential input of the amplifier. Bulk-driven current mirrors 

were used for the bias current and the loads. The aim of the design was to achieve desired gain 

using ultra low voltage and very low power dissipation. A gain of 14dB was achieved using 1 V 

rail-to-rail voltage. The power dissipation was 104uW. The results obtained are very good. The 

design was successful in achieving its goal of operation at very low voltages with low power 

dissipation. However, there is always room for improvement. The design can be modified to 

increase the gain and the unity gain bandwidth. The differential amplifier presented can be used 

as an input stage for an operational amplifier.  
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