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Abstract 

This work describes the development of a software tool that implements a novel method for 

automatically generating simulation ready behavioral models for switching circuits with an 

emphasis on power regulators. The work begins by examining the theory of operation of both 

linear and switching regulators. Then, the capability of two behavioral modeling languages 

(Verilog-A and PSPICE ABM) are examined in detail. Next, the languages previously discussed 

are used to develop and test a model of a commercial regulator (Texas Instruments TPS40305). 

Finally, the prospect of automating the process is discussed. 
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1 INTRODUCTION TO VOLTAGE REGULATORS 

It is very common for electronic devices to require a constant voltage in order to maintain 

operation. Generally, these devices are designed around fairly generic voltage ranges such as 

12V, 5V, or 3.3V. Unfortunately the wall outlet, or a battery, do not deliver these voltages so it is 

necessary to have some sort of device which will control the supply voltage to keep it in an 

acceptable range. These voltage regulation devices are referred to as voltage regulators and are a 

key component of nearly every electronic device in use today. There are two common types of 

voltage regulators. The first, known as a linear regulator, uses mostly passive elements to keep 

the output voltage steady and relatively independent of the input voltage. The second, known as 

a switching regulator, uses an active device in a switching configuration to regulate the voltage. 

Each type has its own advantages and disadvantages that will be discussed further in this section. 

The switching regulator is a power electronics circuit with a wide usage base in modern 

electronic systems. The basic premise of operation of a switching regulator is to use a switching 

element, such as a transistor, in conjunction with an energy storage component in order to 

regulate the voltage and current at the terminals of the circuit. 

 

Fig. 1: Typical switching regulator circuit. This particular configuration shows a boost converter that 

offers a higher voltage at the output than at the input. This circuit will be discussed more thoroughly 

in the following sections. 

This is in contrast to the also very common, linear regulator. A linear regulator serves the same 

purpose as a switching regulator but performs the function using a significantly different 

implementation. Linear regulators utilize resistive losses to dissipate a set amount of power and 

control the voltage at the output terminal. 
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Fig. 2: This configuration is a simple linear voltage regulator. The circuit makes use of resistive losses 

to dissipate power combined with the voltage stability of the Zener diode to provide a highly stable 

output voltage at the cost of potentially high power dissipation. 

1.1 COMPARISON OF REGULATOR TYPES 

These two regulator types have their drawbacks as well as merits, which lend themselves to very 

different uses. A quick summary of benefits of the two regulator types follows [1]: 

 Due to the absence of switching elements, linear regulators are very well suited for 

applications requiring low supply noise. 

 Since current is either being delivered to the load, or not flowing at all, switching 

regulators are often best when power efficiency is a critical concern. 

 For low power levels (< 2W) linear regulators are the superior choice since they are 

physically smaller circuits. 

 At high power levels, switching regulators are the logical choice since they dissipate less 

power; they also create less thermal radiation. 

 Switching regulators are the only choice when it comes to supplying a higher output 

voltage than delivered to the input. 

From these generalized conclusions, one can understand possible applications for each regulator 

type. 
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1.2 COMMON APPLICATIONS OF SWITCHING REGULATORS 

Switching regulators enjoy a wide range of applications in modern electronics. With the 

combination of low cost, small size, and excellent efficiency, these devices are well suited to a 

wide array of uses. 

Table I: An abbreviated listing of common uses for switching regulators. 

Use Case Description 

Computer Power Supply Nearly all computers require a range of supply voltages from ±12V, 

±5V and others. As a result, switched mode power supplies have 

become the de-facto standard for use in computing. 

Cell Phone Chargers Due to the high volume associated with producing cell-phone 

chargers the circuit designs are very cost-sensitive. Switching 

power supplies allow for cheaper components inside a smaller 

package which leads to further cost reductions. 

Consumer Electronics An increasing number of consumer devices such as televisions and 

even audio devices are using switching regulators to supply steady 

and reliable supply voltages over a wide range of inputs. 

Space Vehicles As a result of the small size and low weight of switching regulators 

in comparison to other power supply options, most space vehicles 

utilize these devices in order to cut down on weight and reduce fuel 

costs. 

2 PHYSICAL PRINCIPLES OF VOLTAGE REGULATORS 

Before discussing the intricacies of regulator design, an understanding of the physical properties 

at both the component level and the system level would prove useful.  

2.1 COMPONENT LEVEL 

Every regulator, whether switching or linear, is comprised of some or all of the basic circuit 

elements. These include components such as resistors, inductors, capacitors, transistors and 

diodes. Each of these devices will be discussed as an overview and then the system level physics 

will be examined. 

Rather than jumping right in to a discussion of components at the physical level, it should be 

noted that there are some electric conventions and principles that are a bit counterintuitive. 
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Perhaps the most commonly cited of which is the discord between “conventional current” and 

“charge carrier current.” 

 

Fig. 3: Illustration of the difference between electron flow and conventional current. 

Current is used to quantify the flow of electric charge; however, electric charge is either carried 

by a negative charge carrier (electron) or positive charge carrier (hole). This implies that a 

current comprised of negative charge carriers flowing in one direction is equal to a current 

comprised of an equal amount of positive charge carriers flowing in the opposite direction. For 

this reason, it is common practice to arbitrarily assume that current flows from an area of higher 

electric potential to an area with lower electric potential. This arbitrary assignment is known as 

conventional current flow and will be used throughout this work. 

2.1.1 Resistor 

The resistor is the most fundamental of all circuit elements. It is a passive device that directly 

relates current flow through the device to the voltage across the device by the following relation, 

known as Ohm’s law: 

 𝑣(𝑡) = 𝑖(𝑡)𝑅 1) 

This equation implies that as the current through the device increases, the voltage across the 

device increases linearly, as well as the converse.  

Using electrons as an example of a charge carrier, electrons are attracted to areas of higher 

potential; therefore increasing the voltage differential increases the force being applied to the 

electrons in the resistor and causes an increased current flow. 



5 

  

2.1.2 Inductor 

Inductors work on a slightly more complex principle. An inductor is a two terminal passive 

device that relates to voltage across the terminals to the change in current through the terminals. 

This relation is given by the following equation: 

 𝑣(𝑡) =  −𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 2) 

A charged particle in motion generates a magnetic field, thus by extension a current generates a 

magnetic field. Imagine taking a wire and wrapping it around a central axis several times. If one 

were to pass a current through this wire it would cause the magnetic field lines to wrap around 

the entire assembly in a manner that would align them with the center axis. Increasing the current 

intensity causes more field lines to pass through the center of the device. If a changing number of 

field lines pass through a coil, a voltage is induced in that wire. When the wire is wrapped in the 

axial configuration of an inductor this causes an opposing voltage to be induced. This effect 

produces the relation between voltage and changing current. 

2.1.3 Capacitor 

A capacitor can be considered a complementary device to the inductor. Both are in the same 

family, utilizing electromagnetic fields to achieve the desired behavior. Like the aforementioned 

two devices, capacitors are two terminal passive devices. In opposition to the inductor, a 

capacitor relates the current through the device to the change in voltage across the terminals by 

the following relation: 

 𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 3) 

This has the effect of smoothing out voltage changes and is commonly used as a component in 

filtering circuits. 

Much like an inductor, the physics behind capacitors requires a basic understanding of 

electromagnetics. A basic capacitor is comprised of two parallel plates separated by an electrical 

insulator known as a dielectric. 
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Fig. 4: Capacitor structure showing the dielectric and the induced electric field. 

Each plate holds an equal but opposite charge that creates an electric field between the two 

plates. The dielectric material serves to reduce the intensity of the electric field and therefore 

increases the capacitance. Since capacitance is defined as 
𝑑𝑞

𝑑𝑣
 a capacitor can be thought of as a 

charge storage device. 

2.1.4 Diode [2] 

The last of the basic passive devices is the diode. A diode is a semiconductor device made of 

oppositely doped semiconductors. This creates a device that allows current to ideally flow in one 

direction but not the other. The figure below illustrates the basic composition of a diode. 

 

Fig. 5: Diode physical structure 

While there are many different types of diodes, the canonical form of the diode is a fairly simple 

device. The diode is the first device examined which has a current-voltage (I-V) relationship that 

is non-linear. Diodes generally operate in one of a few regions, the diode can be forward-biased, 

reverse-biased, or in the breakdown region. The following sections briefly discuss each region of 

operation. 
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Fig. 6: Regions of operation of the diode [2] 

2.1.4.1 Forward Biased Region 

In the forward biased region the diode essentially acts as a short circuit and conducts in a nearly 

unimpeded fashion. The diode is considered to be in the forward biased region when the voltage 

across the terminals is greater than zero. In this region, the current through the device can be 

closely approximated by a diode model known as the Shockley diode equation that is given as: 

𝑖 = 𝐼𝑆(𝑒𝑣/𝑉𝑇 − 1) 

where 𝐼𝑆 is the saturation current and 𝑣𝑇 is the thermal voltage. This model predicts that as 

the voltage across the diode increases, the current through the device increases exponentially, 

which explains why after a certain point the diode behaves as a short circuit. 

2.1.4.2 Reverse Biased Region 

In the reverse biased region the diode nearly completely blocks the flow of current in the reverse 

direction. The diode enters the reverse bias region when the voltage difference across the 

terminals is less than zero and remains in this region until the voltage crosses a threshold known 

as the breakdown voltage. 

The current through the device in the reverse bias region is equal to the saturation current of the 

diode. This arises from the behavior of the material at the boundary known as the p-n junction, 

where the two types of material (p-type and n-type) meet. Applying a voltage differential such 

that the voltage at the n-type terminal is higher than the voltage at the p-type terminal results in a 

situation in which the junction forces a depletion region and the device transfers only a small 
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amount of charge carriers between the junction. This situation is what causes the reverse bias 

effect. 

2.1.4.3 Breakdown Region 

The breakdown region refers to the region of operation in which the voltage across the terminal 

has surpassed the breakdown voltage. This causes a complete “breakdown” of the depletion 

region and results in spontaneous conduction in the reverse direction. 

Generally when a diode enters the breakdown region it is considered a catastrophic failure and 

the device must be replaced. Destruction of the device results from the relatively large voltage 

applied across the terminals; this large voltage causes the p-n junction to breakdown and to cease 

operating as a semiconductor device. 

In certain cases a diode falling into the breakdown region is not catastrophic. One type of diode, 

known as the avalanche diode, is actually designed to survive operation in the breakdown region 

without permanent damage.  

Some diodes, known as Zener diodes, are designed to be operated in the reverse bias region. 

These devices are widely used in linear regulators in order to provide a constant reference 

voltage and will be discussed in more detail in the following sections. 

2.1.5 Transistor 

Transistors are perhaps the most complex and broad field of basic circuit elements. The transistor 

is an active three (or four) terminal device that is commonly used to control either the current 

through or voltage across a circuit. 

A transistor can be thought of as a control station that opens, constricts, or closes to control the 

flow of charger carriers through two of its terminals. This operation allows for various 

combinations which have paved the way for nearly every electronic invention since the early 

1970’s, including radios, amplifiers, switches, televisions, computing, etc. 

While the general field of transistors is very broad, by far the two most common types of devices 

in use today are bipolar-junction transistors (BJT) and metal-oxide semiconductor field 

effect transistors (MOSFET). Each device has merits and will receive proper analysis in the 

following sections. Generally, BJT’s are used when the design requires very high frequency 
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switching while MOSFET’s are used for designs that aim for lower bias power draw or higher 

input impedance. 

2.1.5.1 BJT 

A BJT is a very widely used transistor type developed only a year after the first transistor making 

it the oldest type of transistor still in use today. The BJT operates as a current control device and 

comes in one of two configurations, NPN or PNP. In the NPN construction the diode is 

manufactured as a layer of n-type material, another of p-type material, and another of n-type 

material. The PNP type is just the opposite order. These devices operate by utilizing the principle 

of charge injection. As a larger voltage is applied to the center material more charge carriers are 

injected into the device so that the entire device begins to behave more and more like a short 

circuit. 

 

Fig. 7: Illustration of device construction of an NPN BJT transistor showing the operation in the 

active region. 

As only a rough understanding of transistor operation is necessary for the following sections, the 

intricacies of operation will be left to more eloquent writers with fewer page constraints, 

however the essentials are covered as necessary [2, 3]. 

BJT’s like diodes and MOSFET’s are nonlinear devices with three modes of operation. The 

regions of operation of a BJT are the cutoff, active, and saturation regions and each one has a 

specific behavior. 
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Fig. 8: Regions of operation and I-V characteristics for the BJT [2] 

The BJT enters the cutoff region when the base voltage is lower than the emitter voltage and the 

collector voltage is higher than the base. In this region, the transistor is not conducting. The 

saturation region is next and is entered when the base voltage is higher than the emitter voltage 

but the collector voltage is not higher than the base voltage. In this region the current through the 

device is rapidly rising to reach the maximum collector current. Upon hitting the maximum 

collector current limit the device enters into the active region in which the collector current is 

essentially flat. This is the most commonly used region of operation and has many purposes 

ranging from acting as a resistor to performing signal amplification. 

2.1.5.2 MOSFET 

The MOSFET is the other most common type of transistor. MOSFET’s are relatively new as 

compared to BJT’s; though this has not slowed the adoption rate of MOSFET’s and these 

devices are now being used in applications that were previously reserved for BJT’s. 
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Fig. 9: Illustration of MOSFET construction 

The principle of operation for a MOSFET is very different from the BJT. Whereas the BJT relies 

on charge carrier injection and recombination, the MOSFET utilizes a unique behavior of the 

semiconductors comprising the device. When a voltage is applied to the gate it causes an effect 

on the substrate that creates a depletion region. Within the depletion region a channel is 

induced between the drain and source that allows for the conduction of charge carriers. As the 

voltage on the gate increases the size of the channel increases and allows for more charge carrier 

transportation, therefore allowing more current flow. 

Like a BJT the MOSFET has three distinct regions of operation known as the cut-off, active, and 

saturation regions; however, somewhat confusingly the active region of the MOSFET is most 

similar to the saturation region of the BJT and the saturation region of the MOSFET is most 

similar to the active region of the BJT. The following figure illustrates the three regions of 

operation of the MOSFET. 
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Fig. 10: MOSFET regions of operation 

Before analyzing the regions of operation it is helpful to introduce a quantity known as the 

overdrive voltage, this quantity is most responsible for determining the charge flowing through 

the channel and is described by the following relationship 

 𝑣𝑂𝑉 ≝ 𝑣𝑔𝑠 − 𝑉𝑇 4) 

where 𝑣𝑔𝑠 is the small signal voltage from the gate to source and 𝑉𝑇 is the threshold voltage, 

which is a device parameter determined by the manufacturing process. 

For all following analysis the device under consideration will be assumed to be an NMOS device 

in which the substrate is p-type, but by incorporating a reverse in polarity analysis is the same for 

PMOS devices.  

The MOSFET is in the cut-off region whenever the gate-source voltage is less than the threshold 

voltage. In this region the channel is pinched off and the device does not conduct.  

The next region of operation is entered when the drain-source voltage is greater than zero but 

less than the overdrive voltage as defined above. In this region the device begins conducting and 

an increase in drain-source voltage causes the induced channel to expand and thus results in an 

increased current flow. The drain current in this region can be described by: 

 𝑖𝐷 = 𝑘𝑛
′ 𝑊

𝐿
[(𝑣𝑔𝑠 − 𝑉𝑇)𝑣𝐷𝑆 −

1

2
𝑣𝐷𝑆

2 ] 5) 

where 𝑘𝑛
′  is another device parameter determined at manufacturing time and 

𝑊

𝐿
 is the width of the 

device divided by the length of the channel, a quantity known as the aspect ratio. 
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Finally, when the drain-source voltage is greater than the overdrive voltage the MOSFET enters 

the saturation region. In this region of operation the channel has expanded to its maximum limit 

and is conducting as much current as possible. Therefore, with an increasing drain-source 

voltage the drain current is relatively stable. The following relation describes this region: 

 𝑖𝐷 =
1

2
𝑘𝑛

′ (
𝑊

𝐿
) (𝑣𝐺𝑆 − 𝑉𝑇)2 6) 

Like the BJT, this last region in which the device current is relatively constant under increasing 

voltage conditions is the region in which the device is most commonly designed to operate. 

However, for the purposes of a switching regulator the transistor will be operated as a switch and 

will therefore be driven between the cut-off and saturation regions as quickly as possible. The 

following sections will analyze a linear and switching regulator, respectively. Each device will 

utilize the components described in the preceding sections and the operation will be discussed in 

detail. 

2.2 SYSTEM LEVEL – LINEAR REGULATOR 

This section focuses on analysis of a linear regulator known as a simple series regulator with 

emitter follower. This device relies heavily on the aforementioned reverse bias operation of the 

Zener diode as well as the current amplification of the BJT.  
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Fig. 11: Simple Zener regulator with an added emitter follower for increased output current 

In order to understand the operation of this device however, let us first consider a very similar 

configuration that does not use the BJT. This design relies solely on the Zener diode to regulate 

the output. 

 

Fig. 12: Simple Zener voltage regulator 

While it was mentioned previously, the Zener diode was not discussed in great detail. The reason 

for the Zener diode’s unusual behavior of holding a steady voltage under reverse-bias results 

from a physical effect known as the Zener effect [4]. The Zener effect occurs as a result of an 

expansion in the depletion region at the p-n junction, this expansion creates a high strength 

electric field across the junction that allows for highly stable voltage regulation. 
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Returning to the regulator shown in Fig. 11, a configuration known as an emitter-follower allows 

for higher current at the output but otherwise operates on the same principle as the simple Zener 

regulator.  

3 TWO COMMON SWITCHING REGULATOR TOPOLOGIES 

There are a myriad of topologies that can be used to implement a switching regulator. As a 

general introduction, this work focuses only on the two most common; however, the developed 

tool and method for modeling these circuits allows for the modeling of any generic pulse width 

modulated switching regulator. Specifically, this section focuses on Buck and Boost regulators 

that serve as the building block of most modern voltage regulation circuits [5]. Throughout 

analysis, there will be a number of important assumptions and definitions that will be used unless 

otherwise noted: 

1. The transistor is driven by a periodic signal. 

2. The duty cycle of the converter is defined as the ratio of the time the transistor is on to 

the time the transistor is off, this is assumed to be a variable quantity. 

3. 𝑡𝑜𝑛 refers to the time in which the transistor is on and current flows through the device 

4. 𝑡𝑜𝑓𝑓 refers to the time in which the transistor is off and current is not flowing through the 

device 

5. The switching period, 𝑇, is the inverse of the switching frequency, or the sum of 𝑡𝑜𝑛 and 

𝑡𝑜𝑓𝑓. 𝑇 =
1

𝑓𝑠
= 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓 

6. 𝑡𝑜𝑛 and 𝑡𝑜𝑓𝑓 can be related to the duty cycle by 𝑡𝑜𝑛 = 𝐷𝑇 and 𝑡𝑜𝑓𝑓 = (1 − 𝐷)𝑇. 

7. While the load is depicted as a resistor, the load on a voltage regulator is rarely, if ever, 

purely resistive. 

8. The regulator has already completed the startup process and has reached steady state 

operation. 

3.1 BUCK REGULATOR 

The buck regulator topology is a step-down regulator in that the voltage at the output is smaller 

than the voltage at the input, and is of the same polarity. Additionally the output voltage is 
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directly proportional to the input voltage multiplied by the duty cycle of the switching element; 

therefore, the following relations describe most basic features of the buck regulator [5]. 

 0 ≤ 𝑉𝑜𝑢𝑡 ≤ 𝑉𝑖𝑛 7) 

 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛𝐷 8) 

While it is important to understand the basic operation of the buck regulator topology, it is much 

more useful to understand the theory of operation so that a simulation model can be derived. In 

order to develop such an understanding, it is instructive to examine the canonical circuit 

topology that is shown in Fig. 13. 

 

Fig. 13: Basic topology for a buck regulator. This circuit is useful for reducing the magnitude of the 

input voltage to the required output voltage. 

A full treatment of the buck topology, as well as the other common topologies, can be found in 

[5]. For the purpose of developing a behavioral model, a basic understanding of the principles of 

operation will be sufficient. 

Analysis of the buck regulator is conceptually simplified by dividing the operation into two 

modes, continuous and discontinuous operation. In continuous mode the current through the 

inductor (𝐼𝐿) either never becomes zero as shown in Fig. 14, or only becomes zero at a singular 

point. 
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Fig. 14: Graph showing the inductor current of a buck regulator operating in the continuous mode of 

operation. 

Conversely, in discontinuous mode the inductor current may drop to zero for an indefinite 

period as shown in Fig. 15. 

 

Fig. 15: Graph showing the inductor current of a buck regulator operating in the discontinuous mode 

of operation. 

3.1.1 Continuous Mode 

Consider a buck regulator topology that is guaranteed to be in the continuous mode of operation. 

The circuit can be in one of two states; either the transistor is ON, or the transistor is OFF. These 

two states will be referred to as the ON State and OFF State.  

In the ON State the equivalent circuit for the regulator is shown in Fig. 16: 
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Fig. 16: Equivalent ON circuit of a buck regulator operating in the continuous mode of operation. 

From this equivalent circuit, the difference between 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 is the voltage drop across the 

inductor (𝑉𝐿): 

 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = 𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
  9) 

In the case where the current is continuous the current has the form: 

 
𝑑𝑖

𝑑𝑡
=

𝐼2−𝐼1

𝑡𝑜𝑛
 10) 

Substituting this into the preceding equation and solving for 𝑡𝑜𝑛 yields: 

 𝑡𝑜𝑛 = 𝐿
𝐼2−𝐼1

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡
 11) 

In the OFF State the equivalent circuit for the regulator is shown in Fig. 17: 

 

Fig. 17: Equivalent OFF circuit of a buck regulator operating in the continuous mode of operation. 

Since it is impossible to instantaneously change the current flowing through an inductor, a 

phenomenon known as “inductive kick” causes the voltage polarity across the inductor to 

immediately reverse. [3] This reversal forces 𝑉𝐿 = −𝑉𝑜𝑢𝑡 therefore: 
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 −𝑉𝑜𝑢𝑡 = 𝐿
𝐼1−𝐼2

𝑡𝑜𝑓𝑓
 12) 

solving this equation for 𝑡𝑜𝑓𝑓 yields: 

 𝑡𝑜𝑓𝑓 = 𝐿
𝐼2−𝐼1

𝑉𝑜𝑢𝑡
 13) 

In steady state operation the term 𝐼2 − 𝐼1 is the same during the ON State and the OFF State, 

therefore: 

 
𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

𝐿
𝑡𝑜𝑛 =

𝑉𝑜𝑢𝑡

𝐿
𝑡𝑜𝑓𝑓 14) 

Simplifying and substituting the known values for 𝑡𝑜𝑛 and 𝑡𝑜𝑓𝑓 gives: 

 𝑉𝑜𝑢𝑡 = 𝐷𝑉𝑖𝑛 15) 

The buck regulator multiplies the input voltage by the duty cycle of the switching signal. Since 

𝐷 < 1, the output voltage will always be less than the input voltage. 

3.1.2 Discontinuous Mode 

Many regulators enter the discontinuous mode while operating light loads, so it is also important 

to analyze the buck regulator while it operates in this mode. The regulator enters discontinuous 

mode when the inductor current drops to zero for longer than an instant. As before, analysis is 

simplified by considering the regulator in the On State and the Off State separately and then 

combining the derivations to encompass the overall circuit behavior. 

To mathematically determine if the regulator is in the discontinuous mode, the inductance value 

must be compared to the critical inductance of the switching regulator. The critical inductance 

is purely a design parameter for the regulator and is used as a check so that the designer can 

know whether the device will enter discontinuous mode or not. This value can be calculated by: 

 𝐿𝐶 =
𝑅(1−𝐷)

2𝑓𝑠
 16) 

where 𝑅 is the resistive load, 𝐷 is the duty cycle, and 𝑓𝑠 is the switching frequency. Using this 

term the regulator is defined as operating in the discontinuous conduction mode if 𝐿 < 𝐿𝐶. One 

other important consideration is that, like the analysis of the continuous conduction mode, the 

discontinuous conduction mode can be considered to be in a certain state. However, due to the 
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fact that the inductor current can remain at zero for a period of time, it is important to consider 

this in analysis. Therefore the regulator can be considered to be in one of three states: 

State 1. ON State 

State 2. OFF State (Discharging) 

State 3. OFF State (Discharged) 

The behavior in states 1 and 2 are the same as derived previously for the continuous mode; 

however, state 3 describes a new behavior that did not previously need to be considered. 

 

Fig. 18: Equivalent circuit of buck regulator after inductor has expended all of the stored energy and 

the current drops to zero. 

In this state, the inductor has expended all of its stored energy and current is no longer flowing to 

the load as a result of the regulator. It is important to remember though that since the load can be, 

and usually is, a reactive load this loss of current does not necessarily mean that the output 

voltage drops to zero. As has been derived in other works [5, 6, 7] the input/output voltage 

relationship is given by: 

 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

2

1+√1+
4𝐿(1−𝐷)

𝐿𝐶

 17) 

3.1.3 Summary 

The buck regulator is a useful topology for producing a lower output voltage than is supplied to 

the input. This characteristic occurs as a result of the topological configuration of the switching 

element that causes the inductor to only store enough energy to deliver a reduced voltage to the 

output. In the boost configuration, the switching element will be repositioned so that it is 

topologically positioned “after” the inductor. The effect of this change will be developed in the 
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next section. Table II shows a few useful references that will be utilized in the following sections 

in order to derive and verify a behavioral model for the buck regulator. 

Table II: Summary of voltage transfer equations for the various modes of operation for a buck 

regulator 

Mode Requirement Voltage Ratio Function 

Continuous 𝐿 > 𝐿𝐶 𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 = 𝐷 

Discontinuous 𝐿 < 𝐿𝐶 
𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 =

2

1 + √1 +
4𝐿(1 − 𝐷)

𝐷2𝐿𝐶

 

 

 

Fig. 19: Open loop response of the buck regulator, showing the voltage transfer ratio in relation to the 

duty cycle. 

3.2 BOOST REGULATOR 

The boost regulator (Fig. 1) is another building block of switched-mode power supplies. This 

particular topology is used to supply a higher voltage at the output than at the input. Analysis for 

the boost topology will proceed in a similar manner to the previous section in which the buck 

topology was analyzed. As before, for the purposes of behavioral modeling the intricate details 

of operation are not of great concern. Thus the topology will only be developed so far as to offer 

an appreciation for the principles of operation. 
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3.2.1 Continuous Mode 

Much like the analysis of the buck regulator, the boost regulator is most easily analyzed by 

dividing operation into two functional states. These states will be referred to by the previously 

established convention of ON and OFF. 

 

Fig. 20: Equivalent circuit for the ON State of the boost regulator topology. 

In the ON state, the switching element creates a short circuit so that the supply voltage and the 

inductor form a closed loop while the load is its own loop as well. In this state the input is 

supplying a voltage that induces a constantly increasing inductor current from 𝐼1 to 𝐼2, this is 

described by the following: 

 𝐼2 − 𝐼1 = 𝛥𝐼 = 𝑡𝑜𝑛
𝑣𝑖𝑛

𝐿
 18) 

While the transistor is on, the input is essentially disconnected from the output and the output 

current is being supplied from the output capacitor. The output capacitor has already reached 

steady state operation and has enough built up charge to keep the voltage relatively constant. 
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Fig. 21: Example waveform for the inductor current of a boost regulator operating in the continuous 

mode of operation. 

In the OFF state, the transistor ceases to conduct and the input voltage is connected to the rest of 

the circuit. When this happens, the voltage across the inductor reverses polarity in order to 

maintain a constant current. During this time the inductor is transferring its stored energy into the 

output capacitor, this transfer of energy causes the voltage at the output to rise above the input 

voltage and hence gives the “boost” regulator its namesake behavior. 

 

Fig. 22: Equivalent circuit for the OFF State of the boost regulator topology. 

The change in current during this period is when the inductor current drops from 𝐼2 to 𝐼1. This 

can be characterized by: 

 𝐼2 − 𝐼1 = Δ𝐼 = 𝑡𝑜𝑓𝑓
𝑣𝑜𝑢𝑡−𝑣𝑖𝑛

𝐿
  19) 

Since Δ𝐼 is the same in both equations we can combine Eqs. 18) and 19) to see that: 
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Δ𝐼 = 𝑡𝑜𝑛

𝑣𝑖𝑛

𝐿
= 𝑡𝑜𝑓𝑓

𝑣𝑜𝑢𝑡 − 𝑣𝑖𝑛

𝐿
 

and substituting the definitions for 𝑡𝑜𝑛 and 𝑡𝑜𝑓𝑓 gives: 

𝑉𝑖𝑛𝐷𝑇 = 𝑉𝑜𝑢𝑡(1 − 𝐷)𝑇 − 𝑉𝑖𝑛𝑇 + 𝑉𝑖𝑛𝐷𝑇 

which simplifies to: 

 𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛

1−𝐷
 20) 

 

3.2.2 Discontinuous Mode 

As with the buck regulator, if the current flowing through the inductor falls to zero before the 

transistor switches back on the boost regulator is considered to be operating in the discontinuous 

mode. As mentioned in the derivation of the behavior of a buck regulator, the regulator operates 

in the discontinuous mode if the value of the load inductance is below the critical inductance. 

The critical inductance for the boost regulator is given by: 

 𝐿𝐶 =
𝑅𝐷(1−𝐷)2

2𝑓𝑠
 21) 

In addition to the critical inductance, the boost regulator relies on a value known as the critical 

resistance that is of equal importance in determining whether the regulator is in continuous or 

discontinuous mode. The critical resistance is given by: 

 𝑅𝐶 =
2𝑓𝑠𝐿

𝐷(1−𝐷)2 22) 
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Fig. 23: Example waveform for the inductor current of a boost regulator operating in the 

discontinuous mode of operation. 

Referring to the figures above it is possible to derive a transfer function describing this topology 

in the discontinuous mode. Analysis begins by noting the average voltages across the inductor 

during each part of the switching are 𝑉𝑖𝑛 during the 𝐷𝑇 period and 𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛  during the 𝐷2𝑇 

period. Since the voltages change by equal but opposite amounts during these two periods it can 

be written that 

 𝑉𝑖𝑛𝐷 − (𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛)𝐷2 = 0 23) 

where 𝐷2 is the period in which the inductor current is falling and is defined by (𝑡2 − 𝑡𝑜𝑛) 𝑇⁄ . 

After analyzing the inductor current during each period it is possible to find equations relating 𝐷 

and 𝐷2 to physical circuit parameters, substituting these values into Eq. 23 yields a quadratic 

equation that can be solved to find that the voltage conversion ratio in the discontinuous mode is 

given by: 

 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

1

2
+

1

2
√1 +

4𝐷𝐿𝑐

𝐿(1−𝐷)2 

3.2.3 Summary 

The boost regulator is a useful topology for producing a higher output voltage than is supplied to 

the input. This characteristic occurs as a result of the topological configuration of the switching 

element that causes the inductor to store enough energy to deliver an increased voltage to the 

output capacitor. Below are a few useful references that will be utilized in the following sections 

in order to derive and verify a behavioral model for the boost regulator. 
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Table III: Summary of voltage transfer equations for the various modes of operation for a boost 

regulator 

Mode Requirement Voltage Ratio Function 

Continuous 𝐿 > 𝐿𝐶 
𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 =

1

1 − 𝐷
 

Discontinuous 𝐿 < 𝐿𝐶 

𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 =
1

2
+

1

2
√1 +

4𝐷𝐿𝑐

𝐿(1 − 𝐷)2
 

 

 

Fig. 24: Open loop response of the boost regulator, showing the voltage transfer ratio in relation to the 

duty cycle. 

4 SWITCHING REGULATOR CONTROL SCHEMES 

Thus far, the topologies examined have all been analyzed as an open loop network, but in reality 

all switching regulators perform as a closed loop system and are used with some sort of feedback 

network. This aids the stability of the circuit and keeps the regulator working correctly over a 

much wider range than would be possible without the feedback. While there are many different 

types of control schemes that can be designed, the vast majority of switching regulators use one 

of a small number of templates to implement the control. The most widely used control schemes 

are pulse-width modulation and hysteresis control. As hysteresis control is not used in any of 

the regulators modeled by this group so far, it will not be discussed in further detail, but the 
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various types of pulse-width modulation are used quite frequently and receive a more in depth 

treatment. 

4.1 PULSE-WIDTH MODULATION 

Pulse width modulation (PWM) is a fairly simple control scheme. Operating on the principle of 

modulating the on/off time of the switching signal this control scheme allows for precise 

optimization of the output voltage. There are two general methods of implementing a PWM 

scheme; the designer can choose to use a variable-frequency PWM or fixed-frequency PWM. 

In the variable-frequency PWM implementation, the on and off times are free to be changed so 

as to cause an unpredictable switching period. This can cause great difficulty in filtering the 

unpredictable electromagnetic interference (EMI) introduced as a result of the switching effect. 

As an alternative to variable-frequency, many switching regulators utilize a fixed-frequency 

approach that greatly simplifies the EMI filtering. This implementation is realized by varying the 

on time and off time in a complementary fashion that ensures that the switching period remains 

constant. 

In addition to choosing a variable-frequency vs. fixed-frequency approach, it is also necessary to 

choose between a voltage-mode PWM and a current-mode PWM. The essential difference 

between the two is that a voltage-mode scheme samples the voltage at the output and adjusts the 

duty cycle accordingly, while a current-mode scheme samples the current through the inductor. 

Each scheme has its own advantages and disadvantages that will be discussed in the upcoming 

sections. 

4.1.1 Voltage-mode PWM 

The voltage-mode control scheme samples the voltage at the output by using a voltage divider 

circuit and adjusts the duty cycle accordingly. Due to the relative simplicity of implementation 

this is the more widely used control method. A typical voltage-mode control scheme is shown 

below. 
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Fig. 25: PWM controller attached to a buck regulator topology 

The following algorithm describes the basic principle of operation: 

1. Sense the difference between the output voltage and reference voltage; this is known as 

the error voltage. 

2. Compare the error voltage to a periodic sawtooth signal 

a. If the error voltage is greater than the sawtooth, then the switch should be on. 

b. Otherwise the switch should be off 

The simplicity of this method is attractive and is a major reason for its popularity. 

4.1.2 Current-mode PWM 

The other type of PWM control scheme proves to be a bit more complex, but not without reason. 

Current-mode PWM operates by sensing the current through the inductor, which is an inherently 

difficult task to accomplish without altering the output. One major advantage of a current 

controlled PWM would be the natural limits placed on the inductor current. This doesn’t come 

without drawbacks though; the current controlled PWM tends to suffer from more stability issues 

than the voltage controlled PWM. Specifically, when the duty cycle is greater than 50% the 

inductor generates sub-harmonic oscillations that can cause the system to lose stability. There are 
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proven methods of compensating for this instability, though that further increases system 

complexity. 

 

The general algorithm used by the current-mode PWM scheme is described below: 

1. Sense current flowing through the inductor. 

2. If inductor current has exceeded control signal level, then close the transistor. 

This system works well after compensating for the instability. 

5 SIMULATION OF SWITCHING REGULATORS 

Simulation has become an essential step in the circuit design process. It is highly unlikely for a 

commercial circuit to be built before being verified through some sort of simulation package. For 

most circuits, simulation is actually an integrated part of the design flow, such that the circuit 

designer may iteratively simulate the design hundreds of times before determining the proper 

implementation. 

Most circuit simulation packages in use today are based off of a SPICE (Simulation Program 

with Integrated Circuit Emphasis) like simulator [1]. These simulators use an iterative numerical 

method to calculate the voltages at every node in the circuit, as well as the current through every 
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branch. Due to the computational power of modern computers these techniques generally work 

quickly enough to require a negligible amount of time; however, in special cases the simulation 

can take hours or even days. The simulation of switching regulators happens to be one such case. 

5.1 EFFECTS OF SWITCHING ON SIMULATION TIME 

The cause for this significant increase in simulation time is a direct consequence of the iterative 

nature of the SPICE engine. In a normal circuit, with an absence of switching elements, most 

circuit quantities change in a relatively predictable pattern. This predictability allows the 

simulation engine to take larger steps in between calculations. This means that there will be a 

relatively small amount of required simulation points, with a minimal amount of iterations at 

each point. 

In contrast, a circuit containing switching elements will experience somewhat “violent” 

transitions at each switching event. These rapid transitions break the predictability of the circuit 

behavior which means that the simulator is required to solve the nodal matrix at many more 

points, and coincidentally, the solution will often take longer at each time step because the 

simulator will have increased difficulty in selecting initial conditions. 

This non-trivial increase in computational complexity leads to drastically extended simulation 

times and an extremely large data set on the order of several gigabytes. Such a resource intensive 

process is not something to be taken lightly and serious commercial vendors do not allow this to 

slow their design times down. Other methods must be utilized to make the design/verification 

process more efficient and economically viable. 

5.2 METHODS OF REDUCING SIMULATION TIME 

Fortunately, there are methods for reducing the effect of switching on simulation time. The most 

common methods involve some sort of behavioral modeling that attempts to remove the rapid 

changes associated with a switching event while maintaining an acceptable level of model 

fidelity. By far the most widely used method is State-Space Averaging; however when 

modeling switching regulators, two additional modeling methods that deserve mention are 

Discrete-Time Modeling [8] and Black-Box Two Port Networks [9]. All of these modeling 

methods have advantages. For example, State Space models tend to be fairly accurate and are 
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very general models; however, they each have their drawbacks as well. State-space averaging 

can become very difficult as the circuit increases in size, discrete-time modeling suffers from the 

same fate, and black-box modeling requires some knowledge about the system under test. 

In response to the shortcomings of these modeling methods, this research group chose to utilize a 

modeling method described in [6] which focuses on averaging the switching element of the 

regulator and leaving the remaining devices as realistic models. This approach is simple, easily 

automated, and highly flexible. 

5.3 SELECTED MODELING METHOD AND PLANNED IMPROVEMENTS 

After careful investigation of previous work [10, 11, 12, 9], a combination of a template based 

approach and the time averaged PWM model described in [6] was determined to be the most 

robust and simplest to implement method for the purposes of developing an automated process. 

Having decided on this method though, it is worth noting that the selected method has room for 

improvement, which will be addressed in work currently under development. Planned 

improvements are: 

 Describe operation in continuous conduction mode and discontinuous conduction mode. 

 Extend PWM model to accurately describe large signal behavior, which is not currently 

offered by this model. 

 Implement into the model nonlinearities that may be important such as switch on-

resistance and diode forward voltage drop. 
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Fig. 26: Proposed new model large signal structure incorporating the diode forward drop and switch 

on-resistance. 

6 INTRODUCTION TO BEHAVIORAL MODELING SOFTWARE 

In the modern workflow, Verilog-A has become the de-facto standard of analog behavioral 

modeling languages, and so will be examined more closely. In addition to Verilog-A, most 

circuit designers and modelers alike have become familiar with SPICE or some derivative of it as 

a program that excels in circuit analysis and verification. It is then natural to extend the 

verification process even further and allow for behavioral modeling within SPICE.  

Since SPICE was developed as a circuit simulation package it was not given any native 

behavioral modeling capability. Fortunately, the electronic design automation company Cadence 

has implemented a library of behavioral modeling tools into their proprietary version of SPICE 

that allows for the same general capabilities as Verilog-A [13]. In the spirit of providing a fully 

integrated design/verification flow PSPICE ABM is explored as well. 

6.1 VERILOG-A 

Verilog-A is the standard for behavioral modeling and the reason for this is fairly clear. Verilog-

A was developed as a standardized branch off of the hardware description language (HDL) 

Verilog.  
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With development beginning in 1985 and officially becoming an IEEE standard 10 years later, 

Verilog is considered a mature language [14, 15]. Originally developed to aid digital circuit 

designers with circuit design, and later synthesis, the original standard did not allow for very 

robust analog behavioral models. 

Realizing the need for analog extensions, development of the Verilog-A language extension 

began soon after development of Verilog and as a result developed proceeded rapidly and was 

quickly integrated into the Verilog HDL standard. 

6.1.1 Using Verilog-A and Exploring Capability 

Since Verilog-A was developed solely to provide capability for analog modeling and is by nature 

a behavioral modeling language, it is an excellent choice for use in automatically generating 

models. The capability of Verilog-A is nearly limitless; as long as the modeler has an adequate 

understanding of the subject matter the language can be used to model any analog system. For 

example while it is often used within the Electrical Engineering discipline to model complex 

circuit behavior, Verilog-A can also be used in other fields such as fluid dynamics, economic 

modeling, or any general situation in which a through variable or across variable make sense. 

Table IV: A summary table describing some of the advanced capabilities defined in the Verilog-A 

language. 

Capability Description 

Arithmetic Operations Addition, subtraction, multiplication, etc. 

Relational Operations Less than, equal to, greater than, etc. 

Logical Operations Provides an implementation for the basic Boolean 

logical operations, both at the bit-wise level and at a 

more abstract level. 

Standard Mathematical Functions Natural and Base 10 logarithm, exponential, square 

root, etc. 

Transcendental Mathematical Functions Implements the trigonometric functions. (sin, cos, 

tan, atan, sinh, etc.) 

Time Based Calculus  Time derivative and integral. 

Transforms Laplace and Z transforms are built into the simulator 
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The above table only scratches the surface of what Verilog-A is capable of but provides a clear 

picture of the capability and shows that it is indeed powerful enough for modeling of switching 

regulators. 

6.2 PSPICE ABM 

SPICE was not developed as a behavioral modeling tool, so the amount of functionality provided 

by PSPICE is not nearly as comprehensive as that which is offered by Verilog-A. Fortunately, 

the functionality that is provided is sufficient to cover most modeling requirements of an analog 

system. The actual capability will be discussed further in the proceeding section. The important 

consideration though is that PSPICE ABM provides all of the necessary functionality to generate 

switching regulator models. 

6.2.1 Using PSPICE and Exploring Capability 

While nearly every circuit designer is familiar with the graphical interface of SPICE simulators, 

a generally less familiar concept is the circuit netlist. The netlist is what is parsed by SPICE and 

describes the connections and parameters of the various models involved in the simulation. As a 

reference, Appendix A: PSPICE ABM Reference Sheet provides a nearly extensive list of the 

capabilities offered by the PSPICE ABM extension. 

The table below shows a summary of the analog modeling functions supported by PSPICE ABM 

that can be compared to the summary given above for Verilog-A. 

Table V: A summary table describing most of the capabilities defined in PSPICE ABM. 

Capability Description 

Arithmetic Operations Addition, subtraction, multiplication, etc. 

Relational Operations Less than, equal to, greater than, etc. 

Logical Operations In contrast to Verilog-A, ABM only provides 

an implementation for IF statements 

Standard and Transcendental Math Functions The same functions implemented in Verilog-

A 

Time Based Calculus Integration and differentiation in the time 

domain 

Transforms In contrast to Verilog, ABM provides a 

Laplace transform only 
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Look-up-tables A feature often used for modeling off of 

measured data, allowing for a certain input 

value to correspond to another defined output 

Filters and Limiters1 Implements high, low, band-pass, and band-

reject Chebyshev filters as well as various 

limiting functions 

While ABM capability is not nearly as extensive as Verilog-A, any functionality that would be 

required in a model of a switching regulator can be implemented using the behavioral modeling 

capabilities of PSPICE. Thus the tool is capable of outputting models in both Verilog-A and 

PSPICE ABM. 

7 MODELING A COMMERCIAL REGULATOR 

Before even considering automating any process, it is first necessary to understand how that 

process works. The most straightforward way to develop such an understanding is to create a 

model by hand. Doing so allows the CAD developer to see what steps in the process are most 

time consuming, which steps are most critical, and which are most likely to be able to be left out 

without loss of fidelity in the model. 

The logical starting point for developing and testing a model would be to recreate the behavior of 

a commercially available regulator. The first candidate for generation by hand was the TPS40305 

[16], which is described as a “high efficiency wide input synchronous buck controller.” The 

process involved in developing this model is described below, results from simulating this model 

are discussed in a later section. 

7.1 MODEL DEVELOPMENT PROCESS 

The first step in developing a simulation ready model for a switching regulator based off of 

datasheet [16] information is to refer to the datasheet and obtain as much information as possible 

about the device. For the TPS40305 some of the more interesting information is listed below: 

 Buck regulator core 

 1.2 MHz switching frequency 

                                                 
1 These features are only supported by the Cadence OrCAD package of PSPICE 
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 Soft-start circuit protection 

 Over-current protection 

 Required operating voltages are all listed 

 Maximum duty cycle is 85% 

This is only a short list of the information contained in the datasheet; in addition to the above 

listed parameters the datasheet includes suggested use configurations, packaging information, 

several pages of testing results, and an extensive amount of other information. 

After identifying these important details the modeler can begin to create the model while 

considering the important figures of merit to capture. As this particular circuit is listed as a buck 

regulator, the modeler can begin by arranging the PWM switch into the buck configuration as 

shown below. 

 

Fig. 27: PWM switch arranged to model the buck topology [6] 

After that, the modeler can consider adding circuit protection features and begin the highly 

repetitive parameter tuning process in which the various regulator parameters can be adjusted to 

meet the optimal performance. Fortunately, the datasheet provides some guidance on selecting an 

appropriate inductance value and suggests an optimal configuration for the compensation 

network. 

At the end of this process, the modeler is left with a model of the regulator IC itself but to 

actually test the behavior the model must be placed into a properly developed circuit. These 

circuits and their corresponding simulations are discussed in the following sections. 
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Fig. 28: Schematic of the internal model of the TPS40305 switching regulator. 

7.2 AUTOMATING THE PROCESS 

After creating the first and second models by hand, the process was well enough defined that the 

algorithms required to automate this time consuming and seemingly complex process could 

come under consideration.  

In developing an algorithm, one of the first steps is always to determine which portions of a 

process are repetitive, for these are often the steps that are most appropriate for automation. In 

fact, this repetition is evident in the very definition of the word. From Merriam-Webster [17]: 

Al-go-rithm – noun \ˈal-gə-ˌri-thəm\ 

A procedure for solving a mathematical problem (as of finding the greatest 

common divisor) in a finite number of steps that frequently involves 

repetition of an operation; broadly : a step-by-step procedure for solving a 

problem or accomplishing some end especially by a computer 

Thus, switching regulator model generation is a field that is prepared for automation. The next 

step is simply to identify which portions of the design loop can be automated, and then to do so. 
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The listing below provides a summary of some of a few parts of the model generation flow that 

need to be automated. 

1. Determine control type: Every practical switching regulator has some sort of control 

scheme to keep the output voltage stable over a wide range. This control scheme is either 

voltage controlled or current controlled, a distinction that must be determined by the 

modeler. This is the type of information that could be determined from the datasheet. 

2. Determine regulator topology: As the vast majority of switching regulators are 

implemented through a buck, boost, or buck-boost topology it is straightforward to 

identify the core of the regulator model. Therefore this is a task that should be built into 

the automation process. 

3. Parameter Fitting: This is perhaps the portion most fit for automation. After 

determining the basics of the regulator’s composition, it then becomes necessary to tune 

the parameters of the chosen topology to show the desired behavior. This process can be 

tedious and very time consuming. Generally the modeler performs some calculations to 

get a rough estimate for what parameters to use and then goes into an iterative process to 

fine-tune the parameters. This type of iteration is a process that computers naturally 

perform well. 

 

8 SOFTWARE IMPLEMENTATION OF AUTOMATION 

In order to automate the model generation process it is necessary to remove the modeler from the 

details of model generation as much as possible. Ideally, the software should be simple enough 

to use that no modeling experience would be required and that anyone with an understanding of 

the desired results should be able to produce a simulation ready model. It is however no easy task 

to generalize such a complex field and make it so easy to use. That is the challenge faced by this 

project and that is the final goal. 

After examining various software design approaches, as well as considering the general process 

involved with creating a regulator model, it became apparent that a template-based approach 

would be the best method for generating the output files desired. The idea behind a template-

based approach is to identify by hand the reusable parts of regulator models then to generalize 
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these reusable parts into a parameterized template. The reasons for this decision and details of 

operation are described in the following section. 

The following is a sample of the languages and libraries used thus far in the development process 

with a short description: 

 Python – Powerful and easy to use scripting language providing the backend processing 

 Qt – Well established and actively developed multi-platform user interface framework, 

used for the GUI 

 Pyside – Python language bindings to interface python with the Qt framework, used for 

the GUI 

 Doxygen – Documentation generation tool which creates documentation from source 

code comments, used to generate developer documentation 

 ElementTree – A python library developed with the purpose of parsing and operating on 

various XML formatted objects, used to store the developed models for later use and 

manipulation 
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Fig. 29: Flowchart describing the general flow of the program from the perspective of the modeler. 

8.1 TEMPLATE BASED APPROACH 

The template-based approach of output generation was chosen for a very simple reason. Upon 

observing hand created models, it was clear that they all had quite a bit in common. In fact it 

often occurs that the only differences between regulator models of the same family are relatively 

minor parameter adjustments. This is the type of situation in which a template based approach 

excels and will fit make it a simple matter of utilizing curve fitting algorithms to find the proper 

parameters. The details of this approach are explained farther down in section 8.3. 
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8.2 GUI DEVELOPMENT PROCESS 

In developing the user interface it is important to consider the way in which the final user will 

interact with the program. In CAD software, the end user is generally technically proficient with 

subject matter experience. This however is no excuse for an overly confusing and frustrating 

interface. In order to provide the simplest and most straightforward modeling process, the tool 

uses a wizard interface to walk the modeler through the necessary steps. 

 

Fig. 30: The first step in the model generation tool wizard. 

The process of determining in what order to present options to the user was much that same as 

solving any Engineering or Physics problem.  

The first step began with identifying all of the variables under consideration such as regulator 

core type, error amplifier type (for compensation), control method (voltage, current, etc.), 

regulator parameters, and circuit protection features.  

The next step was to determine which of these variables were dependent on each other. For 

example, it is impossible to know which regulator parameters will need to be gathered before 

asking the user what type of regulator core and control method is being modeled. 

Finally, after considering all constraints, it was essential to present the information in a logical 

manner. Within the program the user is first greeted with a screen asking for basic information 

about the regulator core such as the type, and control method. The next screen then presents 
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parameters for the user to provide, which are necessary for simulation. The next screen gathers 

all information related to compensation information. This includes choosing a compensation 

template and selecting an error amplifier type. In the near future, this tool will provide 

functionality to automatically determine compensation information based off of datasheet 

information or a circuit netlist. 
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Fig. 31: Flowchart for the graphical user interface 

The program flow will allow for the most effective utilization of the modeler’s time, which is 

one of the main goals of automating this process. After developing the GUI and program flow, 

the algorithms for outputting models needed to be developed, this process is discussed in the 

following section. 



44 

  

8.3 MODEL OUTPUT ALGORITHMS 

One of the key processes developed thus far has been the ability to programmatically generate 

simulation models. This is the most fundamental process in the model generation chain; without 

this output capability the tool is more of just a guide, still leaving quite a bit of work to the user. 

Developing the model output algorithm was essentially a four-step development process 

consisting of the following steps. 

1. Identify the most basic blocks of a switching regulator model 

2. Identify the text required to simulate that block in Verilog-A 

3. Identify the text required to simulate that block in PSPICE ABM 

4. Develop code to do so 

From this identification process, some basic parts were easily identifiable, such as inductors, 

resistors, and capacitors, as well as a few others. In PSPICE, calling on the basic parts is no more 

difficult than writing a single line. There is no need to tell PSPICE what a resistor model looks 

like; it already has that functionality built in. In Verilog-A however, that functionality is not so 

obvious. Due to the inherent flexibility of Verilog-A, the language itself does not have these built 

in models so in order to use them the circuit modeler must recreate them. 

This is not in any way difficult to do, but it does pose a minor problem when attempting to 

generate models automatically. If the model is generated by hand, the modeler knows not to add 

redundant model declarations into the file. But the computer does not recognize this as an issue. 

In order to circumvent this problem, the model calls are tracked until the user is ready to output 

the model, then all of the calls are listed and only one model declaration is output for each call. 
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Fig. 32: Categorizing the building blocks of a switching regulator model 

More complicated building blocks are also necessary however; in fact the fundamental building 

blocks of a regulator model can be categorized into three general categories.  

The first can be considered to be the basic devices. These are the building blocks of essentially 

every circuit, including the following components: 

 Resistor, inductor, and capacitor 

 DC voltage source 

 Voltage controlled voltage source, voltage controlled current source, current controlled 

current source, current controlled voltage source 

The second category would be the compensation scheme, while this is often just a combination 

of resistors and capacitors there are some more complex compensation schemes that deserve 

another layer of abstraction. Currently, the compensation schemes implemented are: 

 Type II (A and B) [18] 

 Type III (A and B) [18] 

Finally the regulator switch model category, this is certainly not the most fundamental category 

of model templates, but it is however the most essential for the purpose of modeling switching 

regulators. There are really only two models required in this category, one switch model for the 

voltage-controlled models, and one switch model for current controlled models. A functional 

block of each is shown below. 
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Fig. 33: Functional block for a voltage 

controlled PWM switch model 
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Fig. 34: Functional block for a current 

controlled PWM switch model 

The two models appear to be very similar, with the current controlled model adding two extra 

pins, the 𝑚𝑜𝑑𝑒 pin being used to determine when the device is in CCM or DCM, and the 𝑉𝑒𝑟𝑟 

pin being used to adjust the output current. The internal structures shown below illustrate the 

differences in the models. 

 

Fig. 35: Voltage mode PWM arrangement [6] 

In the voltage mode model, the current flowing into the device 𝐼(𝑎, 𝑝) is related by the duty 

cycle to the current flowing out of the device 𝐼(𝑝, 𝑐), while the voltage at the output 𝑉(𝑐, 𝑝) is 

related by the duty cycle to the voltage at the input 𝑉(𝑎, 𝑝). 
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Fig. 36: Current mode PWM arrangement [6] 

In the current mode model, the terminal relationships are significantly more complex and will 

not be derived in this text, though a full treatment can be found on pg. 157 of [6]. 

Each of these models come with their own set of complexities and can total 60-100 lines each, as 

a result the circuit modeler must constantly refer to the source material and can take a non-trivial 

amount of time just learning how to properly utilize the model. This is an issue that is solved by 

the software implementation. By allowing the modeler to choose a model and use it as-is the 

modeling process can be made much shorter. 

In order to bring this process to such a level of simplicity though there must be a well-defined set 

of rules to ensure that the models produced are both physically accurate representations of the 

system and syntactically correct for the respective simulator being used. A flowchart of the 

model output process is shown below. 
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Fig. 37: Flowchart showing the process for outputting a generic regulator model 

Implementing this algorithm, though, begs for a more generalized language for creating the 

models, due to the aim of producing models for multiple simulators. In pursuit of this goal a 

specialized “back-end” syntax and template library was developed which allows for a greatly 

simplified model generation flow. A sample of this syntax, built using the Python language, is 

shown in Appendix A which demonstrates the simplicity of the model output implementation. 

With only 70 lines of code this script creates both a SPICE model and a Verilog-A model for the 

TPS40305 which was discussed and developed in Sec. 7 Modeling a Commercial Regulator. 

The models output by this script are actual working models; in fact, the model output by the code 

above was used above to simulate the results of the TPS40305 which are shown below. After 

running this code, the next step would be to use the generated files in a model verification suite. 
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This suite is under development and a rough framework has been developed which allows for 

semi-automated verification. In the future, this group hopes to further develop this capability into 

a fully integrated approach so that the user need not know that verification is happening at all. 

The following two sections provide an analysis of the generated model. 

8.4 ANALYSIS OF DEVELOPED MODEL 

8.4.1 Transient Analysis 

For the transient analysis the objective is to estimate the ability of the regulator to respond to 

rapid changes on the output. Placing a current source in parallel with the load and turning it on at 

a certain time in the simulation process is one way to test this ability. This behavior simulates a 

load change and helps provide an analysis of the load regulation, which is a measure of how 

stable the output voltage is in response to changing load conditions. 

Much like testing the AC response, testing the transient response requires a separate simulation 

set-up in order to produce acceptable results. This network is shown below. 

 

Fig. 38: Circuit schematic for transient simulation of TPS40305 

This network is used in the following discussion showing the results of the transient simulation 

as compared to results presented in the datasheet. The datasheet provided by Texas Instruments 

unfortunately does not show any direct results from a transient measurement. Many of the 

figures of merit given on the datasheet can be found through simulation and some of those results 

are compared here. 
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For the first test, the goal is to verify the load regulation of the regulator. This quantity was 

introduced earlier in the text, though only informally. A formal definition of load regulation is: 

 𝐿𝑅% = 100% ∗
𝑉𝑚𝑖𝑛,𝑙𝑜𝑎𝑑−𝑉𝑚𝑎𝑥,𝑙𝑜𝑎𝑑

𝑉𝑛𝑜𝑚,𝑙𝑜𝑎𝑑 
 24) 

The value given by the datasheet for this quantity is a maximum of 0.5% over a load change 

from 0A to 20A. By simulating a change in the load current from 0A to 20A the voltage limits 

are found to be 𝑉𝑚𝑖𝑛,𝑙𝑜𝑎𝑑 = 1.80182 𝑉, 𝑉𝑚𝑎𝑥,𝑙𝑜𝑎𝑑 = 1.79252 𝑉 where the nominal voltage is 

1.8 𝑉. Calculating the load regulation from these values yields 0.516%. This value is within 
1

100
 

of the given value which is well within any measure of tolerance for measured systems or 

simulation. 

 

Fig. 39: Simulation results from a 2ms transient simulation in which the output load current begins 

and ends at 1A and is quickly ramped up to a "full" 20A load in the middle section. 

The simulation results shown in Fig. 39 show an expected response to rapid load changes both in 

terms of load regulation and with respect to the observed transitions shown at 0.25ms and 1.8ms. 

This confirms that the generated model is acceptable for general simulation use. It is important to 

remember that these results are only an approximation and that more precise results would be 

achieved by simulating the component level circuit; however, the results obtained by this 

simulation were presented to the user in about a second while the results obtained from a 

component level simulation were observed to take 12-15 minutes. This is an astonishing 700-

900X improvement with only a small loss in fidelity. 
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8.4.2 Frequency Analysis 

In a switching regulator the AC response tends to be a good measure of the noise rejection 

capabilities as well as many other circuit characteristics such as the open-loop transfer function 

and input and output impedance. The typical method for measuring the AC response is to build a 

compensated network around the regulator and then inject an AC source into the appropriate test 

position and measure the response at the output. The figure below shows the compensated 

network for testing the AC response of the TPS40305. 

 

Fig. 40: Circuit schematic for AC simulation of TPS40305 

This network is used in both Verilog-A and SPICE simulations however this model still needs 

some fine tuning before matching with the datasheet. 

9 CONCLUSION 

With the strong framework developed thus far and a continued effort, this tool will undoubtedly 

prove to be a useful part of the regulator modeler’s tool belt. As far as what is currently 

completed the most novel development borne out of this project is the generalization and 

abstraction of modeling languages that simplify the work involved in outputting regulator models 

either as Verilog-A or PSPICE ABM models. This abstraction is what makes it possible to 

connect the graphical interface to the backend operation. Furthermore, this system allows for 

future updates to easily add export capability for other languages and formats as they become 

acceptable for behavioral modeling purposes. 
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There are still improvements to be made in the algorithm as well as some additions that need to 

be made to the syntax. For example, as of yet, the current mode PWM switch is unimplemented. 

However, when that capability has been added the software should be able to enter the ‘alpha’ 

testing stage where it can be used to actually develop new models, as opposed to re-creating 

models which were previously generated by hand. 

Moving forward, there is still work to be finished in automating the model generation process for 

switching regulators, and upon completing that work the methods will be expanded to create 

models for other types of circuits such as data conversion, power-factor correction, and pulse-

width modulation circuits. 
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APPENDIX A: CODE TO GENERATE MODELS OF TPS40305 

from utilities.fileobjects import GenericFile 

 

# This script programatically creates a verilog  

# and SPICE model of the TPS40305 

gf = GenericFile('TPS40305', 'TPS40305') 

 

gf.dc_voltage({'name': 'vref', 

              'value': '0.6', 

              'pos': 'a4', 

              'neg': 'gnd'}) 

 

gf.pwm_core('voltage', 

            {'name': 'pwm', 

             'active': 'in', 

             'passive': 'gnd', 

             'common': 'a0', 

             'dc': 'a3', 

             'dcmin': 0.016, 

             'dcmax': 0.99, 

             'switching_frequency': 1.2e6, 

             'inductor': '10u'}) 

 

gf.typeII_compensation({'name': 'compensation', 

                        'implementation': 'structural', 

                        'pos': 'a4', 

                        'neg': 'a2', 

                        'R1': '2.2k', 

                        'C1': '3.3e-9', 

                        'C2': '15n'}) 

 

gf.gain({'name': 'gain1', 

         'value': '0.167', 

         'in': 'a2', 

         'out': 'a3'}) 

 

gf.vcvs({'name': 'CS1', 

         'value': '1000', 

         'posin': 'a4', 

         'negin': 'a1', 

         'posout': 'a2', 

         'negout': 'gnd'}) 

 

gf.inductor({'name': 'L1', 

             'value': '10u', 

             'pos': 'a0', 

             'neg': 'out'}) 

 

gf.resistor({'name': 'R1', 

             'value': '10k', 

             'pos': 'out', 

             'neg': 'a1'}) 

 

gf.resistor({'name': 'R2', 

             'value': '4.99k', 
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             'pos': 'a1', 

             'neg': 'gnd'}) 

 

gf.resistor({'name': 'R3', 

             'value': '422', 

             'pos': 'a1', 

             'neg': 'a5'}) 

 

gf.capacitor({'name': 'C1', 

             'value': '820p', 

             'pos': 'out', 

             'neg': 'a5'}) 

 

# This generates both the SPICE file and the 

# verilog file. But if we want just one, it 

# is possible to call the generateSpiceFile() 

# or generateVerilogFile() methods. 

gf.generate() 

gf.close() 
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APPENDIX A: PSPICE ABM REFERENCE SHEET 
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