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Coal Fires: An Environmental Disaster 

 For the past semester, I was a part of a team the researched coal fires and a method to 

extinguish these fires. Our team was split into two subgroups: experimental research and 

literature research. I focused a large part of my efforts towards experimental research for the 

project. In the beginning, two other group members and I performed preliminary experiments 

using charcoal. These preliminary experiments with charcoal were used as a starting point for the 

coal fire experiments. Data, such as the temperature profile of the charcoal heating up and the 

temperature profile of the charcoal cooling after it was extinguished, was gathered and analyzed. 

After we had coal to start working with, we began different ways to light the coal. We tried 

several different ways to attempt lighting the coal in a lab setting, but our attempts were not 

successful.  

 Once a design for our large-scale apparatus was developed, the experimental research 

coordinator and I built the apparatus. This first involved loading all the materials in vehicles and 

transporting them to the engineering research center located off-campus. This was the ideal 

location because space was available outside where we could burn the coal. To assemble our 

apparatus, we used cinder blocks as our base on which to set the steel frame. We then began the 

manual labor of shoveling the dirt to fill the base of our apparatus. The dirt is used to simulate 

the ground that is around existing coal fires in the world. We then placed two layers of fire brick 

on top of the dirt.  

 We received our coal from a coal company in Arkansas. What was not apparent at first 

was that the coal was a mixture of rock and coal. I spent time sifting through the mixture to 

separate the coal from the rock. Once we set up and start the fire, a substantial amount of time 

was required. Thermocouples were inserted in two places to monitor the temperature of the fire 

and ground around the fire. I would start a timer and record the temperatures when we began 

extinguishing the fire. Along with the temperatures, I recorded the air flow feeding the fire and 

the steam released when water was introduced to the fire.  

 Although I was on the experimental research team, I also assisted in literature research. I 

researched remote sensing of coal fires and the chemistry of coal fires. When the paper was 

compiled, I assisted in editing the written sections. I also formatted and ordered the bibliography 

and created the table of contents.  



 Once the paper was finished, an oral presentation needed to be prepared. For the oral 

presentation, our team could have up to four group members; I was one of them. My section of 

the oral presentation included the experimental research performed throughout the semester. 

After the oral presentation at the competition, there was also a poster presentation. I, along with 

the entire coal fire team, was available to answer any questions the judges had. Although our 

team did not win the competition, we all learned a lot of information we did not previously know 

about coal fires and received first-hand experience starting and finishing a design project. 
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Executive Summary

The mission of the Coal Fire Gang (CFG) is to spread awareness about the global issue of 

uncontrolled coal fires, and to highlight them as a low-hanging fruit of immediate emissions 

reduction. This report summarizes CFG’s research for the WERC competition, for which this topic 

was chosen as an open task. Beyond raising awareness, CFG modeled, developed and built an 

experimentation apparatus meant to prove the validity of a relatively cheap extinguishing method 

which was also novel to the regions in which it could be employed. The apparatus, which simulated 

an underground coal fire, was used to test a sand and water extinguishing method. 

CFG’s results on the experimental research side suggest that the sand and water approach 

to extinguishing coal fires, though requiring attention and labor for long periods of time (up to a 

few years depending on how long the coal fire has been burning prior to extinguishing activities), 

is very cost effective. Exact economics of a particular coal fire would have to be determined on a 

case-by-case basis, depending on the size and age of the fire, but those costs include only sand, 

water, labor, and heavy equipment to transport the sand around. The proposed extinguishing 

technique involves capping all exhaust vents of a fire with sand, and then saturating the sand with 

water. The steam created by the water on contact with the heated ground and coal then expands 

and flows through the cavity, flowing out of what were originally combustion air influent vents. 

This flow reversal could significantly reduce the oxygen intake while also removing heat. Over 

time, as more vents are discovered or created, they can be capped in the same manner.

On the economics side, CFG proved that even at conservative estimates of the cost to 

extinguish fires and the cost of alternative CO2 sequestering methods, extinguishing coal fires is 

the for immediate global emission reduction. CFG proposes that coal fires around the world are 

prioritized ahead of new and expensive technology for emission reduction, and that at the very 

least the emissions from coal fires are drawn into some regulating system so that they can be 

tracked and better managed.  
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Introduction

For generations, mankind has utilized coal as a source of heat and energy. It accounts for 

approximately 30% of total global energy use, generating 41% of the world’s electricity. While 

the percentage of global energy provided by coal decreased in recent years, the total production of 

coal continues to increase to meet the rising energy demands of the developing world.1 It is safe 

to assume then, that coal will remain an important energy resource for many years to come.

 Unfortunately, the same properties that make coal such an important fuel source also make 

possible the environmental catastrophe known of uncontrolled coal fires. These coal fires can 

occur in underground mines or at the Earth’s surface. Anywhere coal is exposed to sufficient 

oxygen and an ignition source, a coal fire can occur. The source of ignition can be anthropogenic, 

due to unsafe or illegal mining operations, or due to natural phenomena such as lightning strikes. 

Exothermic reactions that occur in coal when exposed to air or water can also lead to self-ignition.2 

The fires are extremely difficult to extinguish, and represent a hazard to humans, a loss of 

resources, and a fruitless contribution to greenhouse gas emissions.

The top coal-producing countries in the world are China, the United States, and Australia.3 

With such extensive mining operations, these countries are well-known for their coal fires. In 

China, uncontrolled coal fires rage in more than eleven provinces2 with approximately $125 to 

$250 million economic loss in the form of lost coal resources.4 In the US, coal mine fires are 

tracked by the Abandoned Mine Land Inventory System (AMLIS).23 AMLIS reports that nearly 

$180 million has been spent reclaiming land affected by coal fires with nearly $900 million more 

allocated for future projects. 

In terms of coal fires, Australia is best-known for Burning Mountain, a coal fire first 

recorded in 1828 and suggested to have been burning for thousands of years.5 More recently in 

February 2014, in the town of Morwell, Australia, a coal seam was ignited in what is suspected 

to have been a deliberate act. The fire is predicted to burn for several months due to the size of 

the coal seam. A member of the local council told Newsweek “The town has been choked with 

smoke. For the first two weeks it was appalling and a constant rain of ash.” The town has been 

evacuated as a result of this fire.6 

These are some of the larger fires studied for this project, but coal fires are experienced 

all around the world, on every continent except Antarctica.7 Coal fires are truly a global problem. 
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The Varied Impacts of Coal Fires

 Despite the significant negative impacts of uncontrolled coal fires, they receive relatively 

little media attention compared to other environmental hazards.8 At the most basic level, coal fires 

represent the unproductive loss of valuable non-renewable resource. In China alone it is estimated 

that up to ten million tons of coal are lost to coal fires each year.9 Coal fires have far more wide-

ranging effects, however, and cause damage not only to our environment, but also to the 

communities standing in the path of coal fires.

The gases produced by coal fires often contain from 40 to 50 different components, many 

of which have negative health consequences.10 The production of gases such as hydrogen sulfide, 

nitrogen oxides, and sulfur oxides exacerbate many respiratory and heart illnesses including 

asthma, chronic bronchitis, strokes, and pulmonary heart disease. Volatile elements like arsenic, 

fluorine and mercury are commonly released through burning coal and will pollute local water 

sources and crops. Mercury has toxic effects on the nervous, digestive and immune systems, and 

on the lungs, kidneys, skin and eyes.11 Pollutants such as carbon dioxide, carbon monoxide and 

methane are also produced by coal fires and contribute to the yearly growth of carbon dioxide in 

the atmosphere.

The geomorphological impacts of coal fires on the earth also pose a risk to human health 

and safety. With coal fires burning at about 600°C,11 the surrounding areas quickly become 

desolate. The high temperatures destroy vegetation and prevent future regrowth. Land is destroyed 

by the creation of clinker, sinkholes and cracks. When a coal seam of 10 meters burns, it leaves 

behind an ash layer of less than one meter thick, causing the overlaying rock to subside into the 

burned-out cavity. The resulting fractures in the strata allow for air, which supports combustion, 

to enter the seam and for toxic exhaust gases to escape, perpetuating the fire and poisoning the 

surrounding air.12 

In China, the Wuda region, in coal-fire proximity, has experienced a 95% reduction of local 

vegetation. Cracks in the Rukigou Coalfield, China are several kilometers in length, tens of meters 

wide, and hundreds of meters deep.13

In order to understand the social implications of coal fires, the coal fire in Centralia, PA 

can be examined. The coal fire was initiated on the outskirts of the town during a 1962 trash 

burning in an unregulated dump. The fire propagated throughout the complex system of abandoned 

mining tunnels under and around the town.4 In the first two decades of the Centralia fire, several 
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projects totaling over $3.3 million were implemented in attempts to control and extinguish the fire, 

but all were unsuccessful. By 1970 the Federal Government began relocating endangered 

residents. Lethal carbon monoxide concentrations were measured emanating from boreholes, and 

the local gas station was ordered to close due to underground fuel tanks overheating.

In 1981 “Concerned Citizens Against the Centralia Mine Fire” was formed to obtain federal 

aid after a 25-year-old man almost fell into a sinkhole and an elderly man died of carbon monoxide 

poisoning. The group sought out media attention, and in 1983, the U.S. Office of Surface Mining 

took action, estimating that extinguishing the fire would cost $663 million. Instead of moving 

forward with extinguishing the fire, the US Congress offered $42 million for voluntary acquisition 

and relocation of businesses and residences. This created a division amongst the town because 

many residents wanted to remain in Centralia; it was their home. The federal government’s 

solution was implemented and between 1985 and 1991, nearly half of the population was relocated. 

Businesses were closed and Centralia became known as a “ghost town”.  Currently less than 5 

residents live within the former city limits of Centralia.14 

Coal Fires and Carbon Dioxide Emissions

Carbon dioxide emissions are a topic of concern due to the climate impact of greenhouse 

gases (GHGs). The breakdown of the sources which emit carbon dioxide and the natural sinks 

which absorb them are presented in Figure 1. The atmospheric growth of 18.7 Gt/year of carbon 

dioxide is increasing at a rate from 1-2% every year. In order to reduce these emissions, actions 

must be taken to eliminate unnecessary sources of carbon dioxide.15 It is most important to identify 

the CO2 sources which can most easily be reduced.
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Figure 1. Global Carbon Projects report on carbon dioxide sources and sinks.15 

While measuring the exact emissions from the fires is difficult, it has been roughly 

estimated that 1% of anthropogenic CO2 emissions are due to coal fires. Based on this estimate 

carbon dioxide released from coal fires is 0.35 Gt/year;15,16 thus, if coal fires were extinguished up 

to 2% of the atmospheric growth of CO2 could be eliminated.

 One of the efforts to reduce carbon dioxide emissions has been the sequestering of carbon 

dioxide, often from coal-fired power plants. Since 2005, the US Congress has authorized $6.9 

billion to develop carbon-capturing technology. The process of carbon capture and storage, 

however, is still too expensive to be an economical method for GHG reduction.17 Technologies 

being investigated as funded federal research are estimated to sequester CO2 at a cost of $38 to 

$107 per tonne of captured CO2. Many of these projects since their inception have been cancelled 

or delayed as a result of limited project funding. Many CO2 sequestering projects will only become 

viable if carbon taxation occurs or subsidies from governments.18

 With realistic carbon capture and storage programs failing to be economically viable, other 

means to reduce carbon dioxide emissions must be evaluated. Projects to extinguish coal fires such 

as the one in Centralia, Pennsylvania, have estimated costs that exceed $600 million, making it 

unreasonable to extinguish the Centralia fire. However, a large number of existing coal fires are 

not unreasonable to extinguish. In 2003, in North Dakota 8 coal fire sites ranging in size from 1/10 

of an acre to an acre in size were extinguished by a $37,000 grant from the Office of Surface 

Mining, Casper, Wyoming.19
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Determining the cost to extinguish coal fires is difficult because each fire has a unique 

location, geometry, size, and set of available local resources. The total cost of unresolved projects 

in the United States to extinguish coal fires is estimated to be $900 million.15 Evaluating coal fires 

in countries such as China and India on an individual basis may reveal that extinguishing coal fires 

would be a cost effective way to meaningfully reduce global carbon dioxide emissions. 

Global Response to Coal Fires

 Coal fires are also a common problem in India, most notably throughout the Jharia 

coalfield. Around “$12 billion in high-grade coking coal, used in steel production, sits below 

Jharia,” and the coal fires that burn in the region jeopardize the population of the region.20 The 

Indian government’s response was a relocation plan worth $1.4 billion, approved in 1996. 

However, as of 2012, of the 90,000 residents of the Jharia region only 1,150 families had been 

relocated. The cause for this slow relocation process is likely due in part to misallocation of funds 

combined with diminutive relocation packages.20

In China, the Sino-German Coal Fire Research Initiative was begun in 2003 to address the 

lack of knowledge about coal fires in China and to develop an appropriate response. The 

Initiative—championing “Innovative Technologies for Exploration, Extinction, and Monitoring of 

Coal Fires in North China” –was divided into two phases. The first phase focused on investigation 

and study of the fires, while the second had a stated goal of “bridging the science, economics, and 

politics of coal fires.”21

One of the most interesting economic incentives which the Sino-German study has 

highlighted is the Clean Development Mechanism (CDM) of the Kyoto Protocol. Defined in 

Article 12 of the Protocol, the CDM allows “a country with an emission-reduction or emission-

limitation commitment under the Kyoto Protocol (Annex B Party) to implement an emission-

reduction project in developing countries.”22  

In the US, the governmental response to coal fires is regulated by the Surface Mining 

Control and Reclamation Act (SMCRA) of 1977, which established a “program for the regulation 

of surface mining activities and the reclamation of coal-mined lands.”23 This act also created the 

Office of Surface Mining (OSM). Under this legislation, “Mine operators are required to minimize 

disturbances and adverse impacts on fish, wildlife and related environmental values and achieve 

enhancement of such resources where practicable.”23
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 The SMCRA introduced a permitting process for coal mines built after 1977. One of the 

requirements of this permitting process is that the company requesting a permit must develop a 

plan for reclamation after mining operations have ceased and provide a deposit of the amount 

required for reclamation.23

Based on SMCRA, extinguishing a coal fire is the legal obligation of the mine owner, 

subject to enforcement (permit withdrawal, fines, etc.) by the OSM. SMCRA was not retroactive, 

so mines already functioning were not required to go follow the new permit process. In 1977, there 

were an estimated 1.1 million acres of abandoned coal mine sites in the United States.24 To deal 

with these abandoned mine lands, the SMCRA set up the Abandoned Mine Reclamation Fund 

(AMRF), and implemented a tax on coal producers in the US. This money goes into the AMRF 

‘to be used to finance the reclamation of abandoned coal mine sites.”24

 Money from that fund is distributed by the OSM to state-level regulating systems expressly 

for the use of reclamation and reduction of abandoned mine hazards. In 2012, for instance, OSM 

announced the fund received more than $485 million, and that money was distributed to states like 

Kentucky, which received $47 million for reclamation activities.25 OSM has a list of problem areas 

which are publicly available in the form of the AMLIS. Each abandoned mine land area is 

documented here, along with its size, description of environmental problems, projected cost of 

reclamation, expenditure to date, as well as several other useful parameters. The OSM distributes 

money to states to deal with these projects, and they are prioritized by hazard threat. Though coal 

fires burn in the US today, this system ensures they will eventually be addressed, and provides 

money to do so through taxation.24 

 Economic Analysis of Coal Fires

Understanding the economics of coal fires requires an understanding of their associated 

costs: the cost of extinguishing the fire, the value of coal lost, and the cost to the environment, now 

directly measurable in carbon credits. Before reviewing the potential costs of coal fires, it is 

beneficial to cover the costs of extinguishing fires. 

While the Centralia fire was estimated to cost over $600 million to extinguish and the fires 

in North Dakota cost as little as $37,00019 to extinguish, the twelve coal fires in the Wuda mining 

area were extinguished for $54 million total. Since 2004, a Chinese government-funded 

firefighting organization has extinguished twelve of the eighteen major fires in the Wuda area.26 
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These fires were extinguished by injections of water, ash, and colloids while covering the burning 

area with loess and gravel to prevent further fire propagation. When these large-scale extinguishing 

efforts started in 2004, there were 159 hectares burning. In 2005 this area was reduced to 113 

hectares, but a surge in illegal mining activity resulted in several new fires and the affected area 

grew to 227 hectares in 2010.26

 The most straightforward cost is the value of the lost coal. Coal costs have fluctuated 

greatly over the past decade, but as a whole has risen approximately $1.74 per year per tonne. The 

current cost of coal is approximately $65 per tonne.27 It is estimated that in China, 10 million tons 

of coal are burned in uncontrolled coal fires each year, resulting in a yearly loss of $650 million 

worth of coal.9 With the GDP of China at $8 trillion, this loss is a small percentage of the total 

GDP. Thus, larger efforts are not being made to extinguish all fires because they are a 

proportionally small economic problem. 

 The cost of coal fires to the environment is more difficult to quantify with certainty. Though 

private companies and individuals started making strides to be carbon neutral as early as 1997,31 

carbon credits were first used internally in Britain.31 The market developed in the UK served as a 

template for other markets. Soon after the ratification of the Kyoto Protocol in 2002,31 the carbon 

market swelled to $64 billion by 2007. In 2008, the Chicago Climate Exchange (CCX) collapsed 

due to a large number of governmental free allowances32 driving down the demand for credits, 

while many startup companies made credits widely available, driving up supply.33 Carbon trading 

systems have been more successful in markets outside the US. 

Currently, carbon credits are largely generated through offset retail providers who then sell 

the credits to companies to reduce their carbon footprint, meet quotas, or industry regulations. 

Terrapass, Carbon Fund, and Native Energy are such companies that engage in reforestation 

projects, implementation of solar or wind energy, hybridization of large trucks to electric/gas, or 

others and currently sell credits at approximately $12 per tonne of CO2.34,35,36 With the quantity of 

CO2 released from uncontrolled coal fires estimated to be 0.35 Gt/year, coal fires would be worth 

$4.2 trillion in carbon credits.  

In the US, companies operating in a carbon market are doing so voluntarily. Volunteer 

markets are begun by private investors or eco-investing firms such as Eco-securities. Most 

members of volunteer markets participate partly due to an anticipation of future government 

legislation regulating emissions. Some companies tax themselves internally for their own CO2 
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emissions.37 Companies such as ExxonMobil, Microsoft, and BP have already priced their own 

emissions and spend money on emission-reduction projects to offset them.37

 The last and most variable cost is that of extinguishing the fires. Unfortunately the 

extinguishing cost of each fire varies with the location, size, age, and coal quality. The fires require 

case-by-case analyses to determine exact extinguishing cost. A study of uncontrolled coal fires by 

the University of Maryland estimates coal fire-extinguishing could cost from $0.55-$5.5 per tonne 

of CO2 emission reduced.31 In China, many coal fires are surface fires or close to the surface,31 

which means excavation is a valid extinguishing method. Despite being a relatively cost-effective 

method, many coal fires are in rough terrain where excavation equipment function poorly. 

Excavation of the most difficult sites would have to be performed by laborers with hand tools, and 

would be much more dangerous and costly. Though this method may seem unreasonable, sixty-

eight coal fires have reportedly been excavated and extinguished by hand with shovels and water 

buckets.31

 Coal burnt in power plants also produces emissions, and so it is not solely from an 

emissions standpoint that the fires should be extinguished. Coal fires cause many problems other 

than accelerating global warming, and though coal burnt in a coal-fired power plant also emits 

emissions, those emissions are a trade-off for energy production. This is opposed to coal fire 

emissions, which eliminate the future possibility for energy production. Emissions from power-

plants, further, are more easily regulated as well, and so those emissions can be tracked, responded 

to, and their production mitigated. Coal fires fall outside this system, and so contribute to the global 

warming problem without being tracked or responded to at all. 

Field Research and Case Studies

 There have been field-work and extinguishing campaigns in the US which have generated 

useful information on responding to coal fires. In the US, North Dakota used OSM funds to 

extinguish several fires as mentioned earlier. Grass fires in 1999 ignited 30 separate coal seam 

fires ranging in size from 1/10 to 1 acre or more in North Dakota, and the method of extinguishing 

used was complete excavation.19 For the coal seams to be extinguished, contractors used 

excavators and bulldozers to first dig a 4-foot wide “intercept trench” which extended to at least 

1ft deeper than the coal seam into the earth. This established a perimeter that the fire would not 

cross since the fuel had been removed. With the fire quarantined, excavators were then used to 
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remove burning coal and place it in a “burial trench,” where it was quenched with water until cool 

to the touch before being buried. After the work of extinguishing was complete, all of the trenches 

were filled in with topsoil and the surroundings were re-graded. Eight project sites (separate coal 

seams) were addressed during this study, and all of them remain extinguished.19 This is a prime 

example of a response to a surface or near-surface coal fire.

 For deeper fires, many other methods have been tried such as compressed-air foam systems 

(CAFS), which work by injecting “a biodegradable compressed foam containing oxygen-

consuming microbes” into the underground seams.38 This method is simpler to employ (it is both 

faster-acting and lighter than water), and also absorbs toxic gases, making the operation safer, but 

is much more expensive. Companies such as CAFSCO and Chemguard have attempted to bring to 

market CAFS technology, but its high price compared to less innovative methods make it less 

feasible.

 In China, enough time has passed to examine the results of large-scale extinguishing 

activities. The main extinguishing activities were to inject a “high pressure mix of water, coal dust, 

and ash” into the underground cavities. Then, the entire area was covered with loess, gravel, and 

rock.26 This was found to be generally effective, with the number of fires reduced from 18 to 6. 

This number is uncertain, because some of the fires were extinguished, while some of them grew 

and merged with others.  Though the extinguishing efforts were seen as a success (fires were 

extinguished in the region with high efficiency), the overall area of coal fires in the region almost 

doubled from 2005 to 2010.  Expansion of the fires has been the result of accelerated removal of 

coal resources, as well as improper sealing of mines left by smaller companies who were forced 

out of the region.26  

 Though new methods of extinguishing coal mine fires may be developed (i.e. CAFS), 

extinguishing any unique fire has to take into account the available resources and methods which 

have been successful in the past. Our experimental apparatus was devised to test methods that CFG 

felt would be employable in extinguishing cavity fires, such as those in the Wuda region, as well 

as large fires in other desertified regions. To develop a robust experiment, it was useful to model 

the heat dissipation of long-burning coal fires. 

Heat and Mass Transfer of Coal Fires

The heat transfer process from coal fires is a complex phenomenon. These fire systems 
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involve transient mass and heat transfer, reaction kinetics, and fluid dynamics.39 Still, there are a 

finite number of ways that heat enters and leaves a burning coal seam.

The combustion of coal is largely dependent on the availability of oxygen to feed the fire. 

Clearly a surface coal fire is exposed to the atmosphere and has an ample supply of oxygen. 

However, an underground fire can receive sufficient oxygen via soil permeability to the 

atmosphere if the fire is close enough to the surface. Deeper fires may receive most or all of their 

oxygen from air flow ingress via cracks in the surrounding bedrock, and via open shafts and tunnels 

in the case of mine fires.40 Because underground coal fires frequently cause land subsidence, the 

longer a fire burns the more likely it is to create new fissures, supplying itself with more oxygen.

The quickest route of heat dissipation, particularly for an underground fire, is the emission 

of heated air and combustion gasses through open fissures, arising from the chimney effect of the 

density difference between the atmosphere entering the coal fire cavity and the lower density of 

the combustion gases exiting the coal fire cavity. Another mechanism is the direct conduction of 

heat from burning coal to the surrounding soil and bedrock.41 Some of the heat from the off-gases 

is also transferred into the ground before the gases escape, which contributes to the conductive 

heat transfer mechanism and helps heats the ground around a fire.42 The conducted heat that 

reaches the surface of the ground is dissipated by convection and radiation.

Ultimately, the goal of modeling burning coal seams, particularly those underground, is to 

provide an accurate and low-cost way to determine how a fire is behaving so that an effective 

firefighting plan can be created. Sophisticated models of coal fires have been developed over the 

last decade, notably within the context of the Sino-German Coal Fire Research Initiative.43 A 

particular issue for these models is the wide variety of timescales on which a coal fires exist. The 

reaction kinetics and some of the gas flows occur during very short time intervals, whereas the 

reaction-front propagation can proceed over long periods. These discrepancies can significantly 

affect the stability of a dynamic model and thereby lower its accuracy.41 Progress has been made 

in addressing this issue, though, and models are continuing to be improved and implemented in 

efforts to eliminate coal fires.

As part of the current work, a relatively simple model was developed to study the heat 

transfer into the ground beneath a burning coal seam, and to investigate how that built-up thermal 

energy then affects the cooling of the seam after the fire is extinguished. The model is a one-

dimensional application of Fourier’s law that has been discretized in time and space. Even though 
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the geometry of the model is quite simple, this numerical approach allows the user to easily input 

variations in the initial conditions (e.g. the initial temperature gradient below the coal seam) as 

well as to implement the sudden changes that occur when a coal fire is extinguished.

The user inputs the initial temperature(s) of the ground beneath what is assumed to be a 

plane of burning coal. The temperature of the burning coal seam is input and is assumed to stay at 

a constant value while the fire is active. The relevant properties of the surrounding rock, i.e. 

density, heat capacity, and thermal conductivity, are also input. These properties are assumed to 

be constant throughout the conduction medium, though it would not be difficult to alter the model 

so that they vary with depth or even time.

The governing equations for the model are:

dT1

dt
0 (isothermal top boundary) (1)

dT1

dt

2k T2 T1

Cp x2 (adiabatic top boundary) (2)

dTi

dt

k Ti 1 Ti 1 2Ti

Cp x2 (internal nodes, i  = 2 to N-1 ) (3)

dTN

dt

2k TN 1 TN

Cp x2 (adiabatic bottom boundary) (4)

where k, , and Cp are the thermal conductivity, density, and heat capacity of the bedrock, 

respectively. x is the node size and Ti is the temperature of the ith node.

 It is important to note that the burning interface in this model is assumed to be stationary. 

Because coal fires naturally move along a coal seam as time progresses, this model has limited 

usefulness over long periods of time; eventually the burning interface moves far away from the 

original position and the one-dimensional model at that spot breaks down. Still, the speed of a coal 

fire reaction front tends to be relatively slow, on the order of 10 to 100 meters a year9, so the model 

is likely applicable for burn times up to a year or two.
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Figure 2. Diagram of 
the model setup.

      Figure 3. (Above) Example transient temperature 
distribution with a change from an isothermal to 
an adiabatic boundary condition. In this 
particular scenario, the fire burns at 800 °C two 
years before being extinguished. The 
temperatures at incremental depths are displayed.

Figure 4. (Left) Plot displaying the cooling of a 
600 °C fire allowed to burn for various lengths of 
time before being extinguished.

 

 
 

Figure 5. (Right) Example 
model behavior of 

a coal seam extinguished 
with saturated steam. 
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One scenario investigated with the model is a worst-case, where the burning coal is placed 

at the top of the temperature column and is allowed to heat the ground underneath (isothermal 

boundary condition at the first node, adiabatic at the Nth). After a specified amount of time, the fire 

is extinguished and the boundary condition at the first node is made adiabatic. The temperature of 

the coal seam is then modeled as its thermal energy dissipates into the already-heated ground 

below; the transient temperature distribution within the Earth simulating such a scenario is 

presented in Figure 3, for a fire temperature of 800 °C, a burn time of 2 years, and a soak time of 

4 years. It can be noted that the cavity lower surface temperature is still above 300 °C 4 years after 

extinguishing the fire. Figure 4 presents surface temperature simulations for coal burn times of 3 

and 6 months, and 1, 1½, and 2 years. Note that for the 3-month burn time, the time required to 

cool the cavity surface to 200 °C is about 1 year, whereas for a 1-year burn time, the time required 

is about 4½ years. 

A key feature that this model scenario clearly shows is that the longer a coal fire is allowed 

to burn, the more heat is pumped into the ground and the longer it takes for the seam to cool to 

safe temperatures after the fire is extinguished. This showcases the extreme importance of 

extinguishing coal fires early after their ignition, before they become very large and hot. 

Proposed Extinguishing Method

CFG’s proposed extinguishing method is to fill the combustion gas exhaust cavities with 

sand and spray water over the sand. The heat of the coal fire, along with the heat that has been 

captured by the surrounding environment, will vaporize the water. The wet sand in the exit vents 

will block the flow of gases, forcing any combusted gases or steam to exit through the air inlets, 

minimizing oxygen flow to the fire. The energy removed by the steam will also increase initial 

cooling of the coal seam below the auto ignition temperature.

Using the transient heat transfer model developed by CFG, the proposed sand-water 

extinguishing method was modeled by maintaining a 100 °C isothermal top boundary after the fire 

is extinguished. After a short period of time, the steam supply is removed and the interface 

condition is changed to adiabatic. The results of this simulation are presented in Figure 5. After 

the steam is removed, the temperature of the coal bed rapidly rises as it reabsorbs leftover heat 

from the ground below, though it is evident that much of the thermal energy was absorbed by the 
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steam.   

Bench-scale Experimentation Apparatus

The experimental apparatus simulates an underground mine fire. An angle-iron steel frame 

was constructed as shown in Fig. 4. Into the angle-iron frame was placed Hardy-Board panels on 

the two sides, bottom, and both ends. Two-inch thick high-temperature insulation was placed on 

the sides and ends of the Hardy-Board box. In the bottom of the box, above the hardy-Board, about 

6 inches of soil was placed. Above the soil, two layers of two-inch thick firebricks were placed. 

Cast-iron grates were placed over the fire bricks, and these grates were covered with one inch of 

sand. Kerosene was distributed into the sand layer, and pieces of wood were placed on the sand on 

the fire-side of the box. A metal grate held the coal above the firewood, below which the fire was 

ignited. 

There will be a steel insert that fitted into the frame to produce a cavity between the bottom 

of the insert and the coal fire. This cavity simulated a cavity within the Earth which exhausted 

combustion gases out of one opening (the fire side) and received combustion air from a separate 

opening to the atmosphere (opposite fire-side). 

 Kerosene and wood were used to start the fire, because unrefined coal is difficult to ignite 

directly. The coal was placed onto the Kerosene-wetted sand. The discharge of a box fan was 

directed into the cavity opposite the fire-side, between the insert and the end of the box. This 

arrangement provided combustion air to the bed of coal and forced the combustion gases to exit at 

the opposite end of the box.

 After the fire had burned for a sufficient amount of time to heat the brick, it was 

extinguished by adding sand and then spraying water, at a predetermined rate, onto the sand. The 

sand was poured into the cavity within 6 in of the top. The wetted sand then prevented the hot 

combustion gases from escaping to the atmosphere. When water was added, after migrating down 

to the hot bricks/coal, it was vaporized and forced out the opening opposite the fire side, which 

previously served to supply combustion air. The steam that exited extinguished the fire within the 

cavity by excluding air and oxygen from the cavity as long as water was added, and as long as the 

fire brick and coal supplied the heat required to vaporize the water. This prevented air from 

entering, ensuring the fire would remain extinguished.  
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Experimental Setup 

 Use the shovel to level the ground. 

1. Arrange the cinder blocks to be used as the steel frame foundation. 

2. Place the steel frame on the cinder blocks. 

3. Cut and place the cement board in the sides of the steel frame so it is flush with the frame. 

4. Place the soil in the steel frame and level it. 

5. Place a 1” layer of sand over the soil and level it. 

6. Cut and place the board insulation in the sides of the steel frame so it is flush with the 

cement board. 

7. Use the steel wire to secure the top of the board insulation to the steel frame. 

a. Use the drill to put holes in the cement board and loop the steel wire through the 

cement board and insulation and around the steel frame at the corners. 

8. Place two layers of bricks over the sand. 

9. Use sand to fill in the cracks between the bricks. 

10. Place a layer of firebrick around the area where the fire-side inner-perimeter of the 

apparatus. (See Figure 6 for an example of the final coal-grate-wood-firebrick arrangement. 

11. Place the grates cast-iron grates on top of the fire bricks so that there is an open pit below 

the grates. 

12. Place wood below the grates in the pit. 

13. Place a second layer of firebrick on the grates around the perimeter. 

14. Load coal on top of the grates within the fire-brick pit formed in step 13. 

15. Install the steel insert. 

16. Tape the roll insulation around the handles of the steel tinsert. 

17. Attach the ball valve to the pump outlet with the PVC pipe fittings. 

18. Attach a garden hose to the inlet and outlet of the pump using the PVC pipe fittings. 

19. Fill the trash can with water. 

20. Use the funnel to pour water into the pump inlet hose until it is full. 

21. Place the pump inlet hose in the trash can. 

22. Connect the pump and the box fan to a power source. 

23. Turn on the pump to ensure water will be discharged. 

24. Adjust the ball valve until the pump runs at 0.5 gpm. 
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Figure 6 - coal-grate-wood-firebrick setup 

 

Experiment

1. Place the metal pan in the end of the box with the firebrick lining. 

2. Fill the pan with coal. 

3. Fill the pan with about 0.25” of kerosene. 

4. Place the steel top on the box allowing room for air egress over the pan and air ingress on 

the other end. 

5. Use the roll insulation to fill any gaps between the steel top’s sides and the insulation. 

6. Place the box fan over the air ingress hole so it will blow air into the box. 

7. Use the propane torch to light the coal and kerosene. 

8. Start the box fan. 

9. When air flow has been established through the box, remove the fan and turn it off. 

10. Allow the fire to burn for 30 min. to heat up the firebrick. 

11. Pour sand into the air egress cavity until it covers the entire cavity. 

12. Start the pump and move the pump outlet hose so that it wets the entire sand surface. 

a. After a few minutes steam should be observed escaping through the air ingress 

cavity. 

b. Continue this until steam is no longer observed. 

c. When steam is no longer observed the cavity and coal temperature should be 

reduced to 100 C and the fire should be completely extinguished. 

13. Turn off the pump. 
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Bench-scale Results and Conclusions

 The CFG method of extinguishing successfully extinguished the coal fire and cooled the 

surrounding environment. Before sand was added the air egress temperature was measured at 560 

C. This is consistent with observed exit gas temperatures at underground mine fires. Covering the 

air egress with sand greatly reduced the amount of combustion gases that could escape through 

that cavity, but did not completely cut off the flow. Adding water to the sand filled the voids in the 

sand and prevented combustion gases from escaping through the air egress cavity, stopping the 

chimney effect. Steam was observed escaping through the air ingress cavity. This greatly reduced 

the amount of oxygen that could reach the fire as the only means for its entry was through back-

mixing. The steam temperature was measured to be 250 C. This superheated steam carried about 

1242 Btu/lb of energy out of the cavity. This significantly reduced two points of the fire triangle, 

heat and oxygen. When steam was no longer observed exiting the air ingress cavity the temperature 

of the coal and surrounding environment was measured to be 100 C. Only 2 gallons of water were 

used.

 This proved the concept that underground coal fires could be effectively and economically 

extinguished using this method. The principal materials needed are both cheap and readily 

available in most circumstances, sand and water. Water’s use, being the more valuable of the two, 

could be limited. Still, extinguishing an underground fire fully, without the threat of it reigniting, 

requires significant dedication of steady effort over longer times than were tested here. Even after 

openings are filled with sand and the fire is cooled with water, the fire must be monitored and any 

new ingress openings must be treated in the same measure or otherwise sealed. 

This is a very simple process and can certainly be implemented on a large scale. The 

combustion gas exit points would need to be identified either visually or by measurement of 

exhaust gas characteristics, e.g., temperature and/or composition. These cavities would then be 

filled with sand and water would be sprayed over the sand at a rate sufficient to keep the sand’s 

surface wet. Steam will be observed exiting at prior ingress points not covered in sand and water. 

When the steam is no longer observed the water can be shut off and the points where steam was 

observed exiting can be filled with sand to help mitigate chances of reigniting. This method 

requires minimal rather inexpensive materials and modest man-hours. 
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Conclusions

1. Coal fires produce greenhouse gases, consume valuable resources, and emit pollution 

which is quite harmful to humans and the environment in general. 

2. It is estimated that the CO2 equivalent emissions from worldwide coal fires is about 1% of 

all manmade emissions, and 2% of the yearly CO2 growth within the atmosphere.

3. From The Coal Fire Team’s investigation, there is evidence that extinguishing coal fires is 

truly the “low-hanging fruit” for immediate short-term reduction in CO2 emissions.

4. There are many methods for extinguishing coal fires. Many have been attempted. Some 

have been successful, and some have been unsuccessful. The successful methods involve 

adding solids like sand or fly ash in combination with water. The Coal Fire Gang has 

demonstrated that a relatively novel method is very effective for certain, if not many, 

underground coal fires. The CFG method injects dry sand into the combustion gas exit 

vents, followed by spraying water onto the sand which migrates down through the sand 

onto the heated Earth below, vaporizes, and flows back out the air inlet openings. The 

cavity fills with steam and the escaping steam velocity, leaving the previous air inlets, 

prevents air from entering the cavity. The steam within the cavity extinguishes the fire and 

keeps it extinguished as long as the hot earth beneath the cavity supplies sufficient heat to 

vaporize sufficient steam. The water vaporization will cool the surrounding soil as long as 

water is supplied and as long as there is stored heat in the soil to vaporize the water. 

5. This novel technique has been demonstrated by small-scale test using an apparatus which 

simulates a coal fire in a cavity underground. The apparatus was operated in a manner such 

that there was a chimney effect for the hot gases exiting the vent opening which induced 

airflow for combustion in an inlet opening. When the sand was added, the exhaust gases 

ceased almost totally, and when water was added, exhaust gases not only ceased, but were 

forced out the air inlet opening. 
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