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My contribution to this project:

As a member of the biobutanol design team, I have been involved with this project through all of 
its phases, including research, technical design, laboratory experimentation, and presentation of 
results at the National Sustainability Design Expo in Washington, D.C.  When investigating 
potential feedstocks for our process, I was responsible for researching the use of forestry waste 
and chicken litter.  This involved both literature research as well as contact with local experts in 
these individual fields.  I also participated in designing a laboratory-scale process that would 
produce butanol from food waste via a fermentation process.  This required determining which 
steps were required for the process, designing the equipment, and assembling the apparatus for 
experimentation.  For the laboratory experimentation phase, I assisted in pre-treating the food 
waste and mixing media for growing a stable bacteria culture.  After the laboratory experiments 
were completed, I was heavily involved in writing both the technical report detailing the results 
of the project as well as the proposal for the next phase of the project.  I worked alongside the 
team coordinator to proofread and edit the final report draft.  At the sustainability expo, I was 
one of the speakers chosen to present our project to the judges.  For detailed information 
regarding this project, please see the attached team report in the Appendix.   
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Team Project Report:

I. EXECUTIVE SUMMARY
Date of Project Report: March 23, 2009
EPA Agreement Number: SU83392701
Project Title: Production of Biobutanol from Biomass Using Novel Membrane Reactor
Faculty Advisers: Hestekin, Jamie; Thoma, Greg; Clausen, Ed
Department and Institution: Ralph E. Martin Department of Chemical Engineering, University 
of Arkansas
Student Team Members: Benbrook, Stephen; Boyd, Robert; Draehn, Ellen; Haub, Ashley; 
Heeb, Rhett; Thibodeaux, Natalie; White, Kris
Project Period: August 2008 through May 2009
Project Amount: $10,000

Description and Objective of Research

Developing renewable energy resources is one of the main challenges facing the world today.  
Our energy sources must become more renewable, more efficient, and safer for the environment.  
With the use of automobiles, the world has been able to make long distances seem shorter, but 
those automobiles have recently come under scrutiny due to sustainability and emission issues.  
The predominant current fuel source, gasoline, is from a limited resource – fossil fuels – which is 
in high demand. Most of the world’s supply is purchased from a limited number of sources.  The 
high demand has caused depletion of oil wells and mass outflow of capital which threaten the 
continued operation of automobiles. Currently, the United States imports 5 billion barrels of oil 
per year, creating a pressing need to find a viable, sustainable alternative.

Past research efforts have made significant progress on electric and ethanol-based solutions; 
however, butanol is another sustainable alternative.  First generation biofuel research has focused 
mainly on ethanol.  Recently, biobutanol has become an attractive alternative to ethanol as a fuel 
oxygenate due to its low vapor pressure, high energy density, and ability to be blended with 
gasoline at the refinery which saves the trouble of transporting ethanol and gasoline separately to 
the fueling stations.  Butanol’s higher energy density increases a vehicle’s fuel efficiency in 
comparison to ethanol.  The high miscibility of butanol and gasoline gives greater flexibility in 
mixture composition.  In addition, modern gasoline automobile engines can use butanol without 
any engine modifications.  Biobutanol does not require automakers to compromise on 
performance to meet environmental regulations.  Older automobiles also benefit from butanol 
being less corrosive than ethanol since it will not corrode rubber seals.  

The purpose of Phase I was to investigate a method for producing biobutanol on a large scale 
from a waste feed stock using a novel fermentation and membrane separation method.  The 
accepted method for biobutanol production is based on a fermentation process that produces 
acetone, butanol, and ethanol utilizing Clostridium beijerinckii in a bioreactor.  The product 
solvents are also accompanied by water in the process and require several separations to produce 
a pure butanol product.  
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Producing biobutanol from a waste product on a large scale is a novel idea.  Because of this, 
there is very little research available in this area.  Previous fermentation research has primarily 
focused on the production of ethanol or biobutanol using cellulosic or agricultural feed stocks.  
The Phase I research team, Team Razorbacks Engineering FUel Solutions for Everyone (Team 
REFUSE), sought to design a fermentation process that would produce butanol from food waste.  
Team REFUSE cultivated a partnership with Chartwells, the campus food service provider for 
the University of Arkansas, for the acquisition of food waste.  They used the samples provided to 
run tests on food waste composition and determine the viability of using the food waste in an 
ABE fermentation process.

Summary of Findings (Outputs/Outcomes)

Food Waste Composition
Team REFUSE first performed sugar and starch assays on food waste from an on-campus 
cafeteria to determine its composition. The testing of the Chartwells food waste indicated the 
waste had approximately 10% sugar and 25-30% starch content, which is sufficient for use in 
fermentation.  

Fermentation
The fermentor used in the laboratory-scale was a two-liter Bioflow II reactor from New 
Brunswick Scientific.  Bacterial cultures are difficult to maintain and do not initially adjust well 
to change.  To minimize cell loss, inoculation of the reactor was accomplished in three steps.  
First the fermentor was run on a batch basis with media as a feed stock.  When the cells were 
actively growing and producing product, the reactor was switched from a batch to continuous 
process.  When the bacteria growth was stabilized in the continuous process, the growth medium 
was exchanged for food waste.

The team chose to use Clostridium beijerinckii, a bacterium that produces butanol, as the best 
bacterium to process food waste. Due to the difficulty in growing the C. beijerinckii culture, 
experimentation was performed with C. tyrobutyricum because it was readily available.  C. 
tyrobutyricum is a close relative of C. beijerinckii that produces butyric acid instead of butanol 
and is often used in a two-step fermentation process to produce butanol.  This culture 
successfully produced butyric acid from food waste, and from these results it is reasonable to 
postulate that experimentation with C. beijerinckii will also process food waste. At the time of 
this report’s submission, a healthy C. beijerinckii culture had been obtained and experimentation 
is ongoing.

Pervaporation
Pervaporation combines permeation and evaporation with good energy efficiency.  This 
technology is based on the different diffusion rates of specific components through the 
membrane.  The feed flows across the inlet side of a hydrophobic membrane, and a portion of 
this stream is pulled through the membrane in vapor form.  A vacuum is applied on the opposite 
side of the membrane to increase mass transfer.  The permeate vapor is then condensed and 
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collected.  The portion of the feed that does not diffuse through the membrane, the retentate,
consists mostly of water and is recycled and disposed.

To obtain a purified butanol product, Team REFUSE built a custom pervaporation system with a 
PDMS (polydimethylsiloxane) membrane to evaluate the separation of butanol from water.  
Several condenser solutions were tested including chilled brine, liquid nitrogen, and dry ice in 
ethylene glycol.  The best results were obtained from the dry ice in ethylene glycol at -15oC.  The 
chilled brine solution failed to condense most of the permeate while the liquid nitrogen froze the 
condensate, plugging the vacuum.  The permeate and feed concentrations were obtained using 
gas chromatography.  Based on these test results, membrane separation has potential for larger-
scale implementation. 

Life Cycle Assessment
In Phase I of this project Team REFUSE illustrated through a life cycle assessment (LCA) the 
environmental advantages of producing butanol.  In America, transportation fuels account for 
34% of greenhouse gas emissions; therefore, it was assumed for this assessment that the function 
of fuel is to move a vehicle.  The basis for the assessment was the energy content of 1 kg of 
butanol, 33.3 MJ/kg.      

The LCA compared butanol to gasoline and ethanol using the SimaPro software program and 
Recipe Endpoint (H).  Gasoline emits 2.17 kg of CO2 more than the production method of 
biobutanol.  When compared to corn ethanol, the process for producing biobutanol produces less 
CO2 by a margin of 1.05 kg of CO2 per kg butanol.  The LCA confirms that biobutanol is more 
sustainable than both gasoline and ethanol.

Conclusions

Phase I proved the feasibility of using a fermentation reaction as the primary step in production 
of biobutanol from food waste.  Currently, carbohydrates, including sugars, starches, and even 
cellulose, can be used as the raw feed to produce alcohol-based fuels via microbial 
fermentations.  Food waste contains an adequate amount (approximately 40%) of these raw 
materials in a form easily utilized by the bacteria, as proven by the team’s food waste analysis.  

Phase I made substantial progress towards demonstrating the production of biobutanol from food 
waste.  First, the team was successful in producing butyric acid from food waste using the 
bacteria culture C. tyrobutyricum, which is closely related to C. beijerinckii.  Experimentation 
with C. beijerinckii is ongoing.  Pervaporation experiments were also successful. 

Based on Phase I research, biobutanol production via food waste is has potential to be a 
sustainable alternative fuel technology.  Experimentation on the fermentor residence time and 
pervaporator operating conditions could increase the yield and profitability of the process.  Based
on the life cycle analysis performed in Phase I, it is clear that the separation of butanol from the 
fermentor effluent is a critical step in improving the sustainability of the production process.  
Therefore more research is required to improve this technology.  Phase II proposes to do this by 
building a pilot-scale plant and gathering experimental data.
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Proposed Phase II Objectives and Strategies

Research on a larger scale is necessary to the development of a full-scale design of a continuous, 
economically viable butanol fermentation process from food waste.  To achieve this goal a pilot-
scale model has been designed that incorporates and builds upon the methods proven successful 
in Phase I.

In Phase II, senior chemical engineering design students will build and operate a pilot scale 
model that will process 150 pounds per day of food waste from one of the cafeterias at the 
University of Arkansas to approximately 190 mL per day of biobutanol.  Building and operating 
this unit will allow the Phase II team to experiment with several operating variables that affect 
yield and process efficiency.  One of the questions raised by the experimental results in Phase I 
was the potential benefit of the conversion of starches to butanol.  In Phase II Team REFUSE 
will determine the relationship between residence time and starch conversion.  Although a longer 
residence time will allow more of the starches to be converted to butanol, at a certain point the 
bacteria will actually begin to decrease butanol production due to a lack of sugars.  
Experimentation in Phase II will determine the optimal balance between residence time and 
starch conversion.    

Experimentation is also needed to increase the effectiveness of the pervaporation system.  
Altering the vacuum pressure and feed temperature of the pervaporator unit will affect the flux 
through the membrane.  Increasing vacuum on the membrane or increasing the temperature of 
the liquid through the membrane will increase the flux.  When using a hydrophobic membrane,
increasing the component flux will increase the butanol concentration in the permeate stream.

The experimentation period will last for one month and the results of the process optimization 
will assist the team in designing a full-scale facility that could be implemented on a university 
campus.  Approximately 1 million pounds of food waste are disposed of each day by American 
universities which could potentially be turned into 8 million gallons of butanol per year.  
Processing all of a university’s food waste will make the institution more sustainable and will 
offset a portion of the fuel costs for the university vehicles.  

Supplemental Keywords

Biobutanol, pervaporation, Clostridium beijerinckii, fermentation, ABE fermentation, food 
waste, alternative fuel source, alternative fuel, sustainability

II. BODY OF REPORT
A. Summary of Phase I Results 
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1. Background and Problem Definition

Developing renewable energy resources is one of the main challenges facing the world today.  
Our energy sources must become more renewable, more efficient, and safer for the environment.  
With the use of automobiles, the world has been able to make long distances seem shorter, but 
those automobiles have recently come under scrutiny due to sustainability and emission issues.  
The predominant current fuel source, gasoline, is from a limited resource – fossil fuels – which is 
in high demand. Most of the world’s supply is purchased from a limited number of sources.  The 
high demand has caused depletion of oil wells and mass outflow of capital which threaten the 
continued operation of automobiles. Currently, the United States imports 5 billion barrels of oil 
per year1, creating a pressing need to find a viable, sustainable alternative.

Past research efforts have made significant progress on electric and ethanol-based solutions; 
however, butanol is another sustainable alternative.  First generation biofuel research has focused 
mainly on bioethanol2.  Recently, biobutanol has become an attractive alternative to ethanol as a 
fuel oxygenate due to its low vapor pressure, high energy density, and ability to be blended with 
gasoline at the refinery which saves the trouble of transporting ethanol and gasoline separately to 
the fueling stations.  Butanol’s higher energy density increases a vehicle’s fuel efficiency in 
comparison to ethanol.  The high miscibility of butanol and gasoline gives greater flexibility in 
mixture composition.  In addition, modern gasoline automobile engines can use butanol without 
any engine modifications2.  Biobutanol does not require automakers to compromise on 
performance to meet environmental regulations.  Older automobiles also benefit from butanol 
being less corrosive than ethanol since it will not corrode rubber seals3.  

2. Purpose, Objectives, Scope

The purpose of Phase I was to develop technology for producing biobutanol from a waste 
product.  Butanol is made commercially from butane, which is obtained from fossil fuels.  
Producing butanol by fermentation is a sustainable alternative.  Fermentation also allows more 
flexibility in the feed stock, with appropriate adjustments to pretreatment.

Producing biobutanol from a waste product on a large scale is a novel idea.  Research has mainly 
been conducted using cellulosic or agricultural feed stocks4.  Biobutanol fermentation requires a 
feed stock that contains or can be converted to simple sugars and starches.  Team REFUSE 
evaluated the feasibility of using agricultural waste, forestry waste, chicken litter, and consumer 
waste products as potential feed stocks.  Forestry waste products such as fallen tree limbs and 
sawdust were rejected as a possible feed stock due to the difficulty of converting the cellulose 
into the simple sugars required for the fermentation.  Agricultural wastes including corn stover, 
wheat straw, and soy straw were rejected because of the difficulty in collection and 
transportation as well as the need for cellulose conversion to sugars (30-40% cellulose)5, 6.  
Although chicken litter can be obtained for approximately $8/ton7, there would still be the 
difficulty of processing the cellulose (about 35% cellulose8

).  Food waste was chosen from the 
myriad consumer wastes for several reasons.  First, it is readily available in significant quantities 
from a variety of sources such as restaurants, grocery stores, hospitals, and cafeterias.  It is 
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estimated that the largest 500 universities across the United States dispose of approximately one 
million pounds of food waste every day.  Team REFUSE performed laboratory tests to determine 
that food waste (from the University of Arkansas food service, assumed typical) contains 
approximately 10% simple sugars (by weight) and 25-30% starches that are suitable for 
fermentation.  Finally, the only acquisition cost associated with food waste are the minimal 
collection and transportation cost.  

Once the feedstock was chosen, a bench-scale model was designed and built to test the 
fermentation using food waste.  The team considered two methods of separating butanol from the 
fermentation reactor broth.  The first was distillation.  The difficulties of using distillation with 
this process related to the high water content in the product stream and the multiple component 
interactions between water, acetone, and butanol.  The high water content requires a large energy 
input to heat the water, which is in great excess compared to butanol.  In addition, when the 
butanol composition of a butanol-water mixture is between 2% and 35%, two distinct liquid 
phases will form9.  Based on a simulation performed by the team, separation of the crude 
fermentation product would require a total of three separate distillation columns.  Because of 
this, pervaporation is a more attractive purification method.  Pervaporation is not affected by 
azeotropes and eliminates the need to vaporize all of the water in the product stream.  

3. Data, Findings, Outputs/Outcomes

Life Cycle Assessment

In Phase I of this project Team REFUSE illustrated through a life cycle assessment (LCA) the 
environmental advantages of producing butanol.  In America, transportation fuels account for 
34% of greenhouse gas emissions10; therefore, it was assumed for this assessment that the 
function of fuel is to move a vehicle.  The basis for the assessment was the energy content of 1 
kg of butanol, 33.3 MJ/kg.  The distances the food waste and the final product will be transported 
were assumed to be one mile or less for a university-scale plant implemented near the campus.       

Unlike most feed stocks, food waste is considered a waste stream, and for the purpose of the
LCA, has no initial carbon burden.  The most significant contributor to both the required energy 
and emissions was the separations step of the process.  It accounts for 0.511 kg of CO2 per kg of 
butanol produced and is the largest contributor by almost a factor of ten.  These figures are based 
on a worst-case scenario for energy input.  With further refinements in pervaporation technology, 
it would be possible to dramatically decrease the energy inputs.  To achieve this goal, the most 
significant step would be to replace the refrigeration cycle with cooling water.

The LCA compared butanol to gasoline and ethanol using the SimaPro software program and 
Recipe Endpoint (H).  Gasoline emits 2.17 kg of CO2 more than the production method of 
biobutanol.  When compared to corn ethanol, the process for producing biobutanol produces less 
CO2 by a margin of 1.05 kg of CO2 per kg butanol.  The LCA confirms that biobutanol is more 
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sustainable than both gasoline and ethanol. Other impact categories of the LCA comparisons are 
given in Figure 1 below.

0
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0.8

0.9

1

LCA Impact Categories

BioButanol

Ethanol 99.7% in H20

Gasoline at refinery

Figure 1.  Comparison of biobutanol to ethanol and gasoline using different impact categories.

Fermentation

The acetone-butanol-ethanol (ABE) fermentation process was implemented in 1916 to produce 
acetone via the Weizmann organism11. Weizmann patented the process for producing acetone 
from starch using the bacterium Clostridium acetobutylicum in 1919. In a typical process, C. 
acetobutylicum first produces butyric, propanoic, and acetic acids. The fermentation continues 
through a solventogenesis stage which produces butanol, acetone, and ethanol11.  The butanol, 
acetone, and ethanol are produced in a 6:3:1 volume ratio12.  One of the problems with butanol 
production by way of ABE fermentation is that too high of a butanol concentration inhibits the 
process. C. acetobutylicum cannot survive at a butanol concentration above 7%, thus to obtain 
higher butanol concentrations, modifications have been made both to the bacterium and the ABE 
process.

Before fermentation experimentation could be started, the team researched which butanol-
producing bacterium would be used.  Butanol fermentation research focuses on two main 
species, Clostridium acetobutylicum and Clostridium beijerinckii.  The key difference between 
these strains is found in their carbohydrate metabolism processes.  C. beijerinckii is able to 
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process a variety of carbohydrates found in food waste; C. acetobutylicum is more limited.  
Therefore, C. beijerinckii was chosen as a more effective bacterium for this process13.

The fermentor used in the laboratory-scale was a two-liter Bioflow II reactor from New 
Brunswick Scientific.  Bacterial cultures are difficult to maintain and do not initially adjust well 
to change.  To minimize cell loss, inoculation of the reactor was accomplished in three steps.  
First the fermentor was run on a batch basis with media as a feed stock.  When the cells were 
actively growing and producing product, the reactor was switched from a batch to continuous 
process.  When the bacteria growth was stabilized in the continuous process, the growth medium 
was exchanged for food waste.  

Due to the difficulty of growing the C. beijerinckii culture, experimentation was performed using 
C. tyrobutyricum, a close relative of C. beijerinckii that produces butyric acid instead of directly 
producing butanol.   Healthy C. tyrobutyricum seed cultures were readily available; therefore, 
research could begin immediately using this bacterium while the team continued to work on 
growing a large C. beijerinckii seed culture.  The fermentor effluent was analyzed by high-
performance liquid chromatography (HPLC) and the results are shown in Table 1.  C. 
tyrobutyricum successfully produced butyric acid from food waste.

Table 1. Butyric Acid production in fermentor over time.

Time (h)

Butyric Acid 
Concentration 
(g/L)

0 0
5 3.88
24 20

We are continuing to work on establishing a C. beijerinckii culture, and expect to have results 
from fermentation using this microorganism at the competition in April.

Pervaporation

Experimentation of the separation of solvent products was performed through a pervaporation 
apparatus using a PDMS (polydimethylsiloxane) membrane.  This technology has advantages 
over traditional distillation for this process because of its ability to successfully separate an 
azeotropic mixture14,15.  Pervaporation is also an ideal choice to extract the low butanol 
concentration typically found in fermentor effluents15,16.  The high water-to-butanol ratio in the 
fermentor effluent also requires a substantial amount of heat duty in a traditional distillation 
column in order to vaporize all of the water.  In contrast, the pervaporation feed only has to be 
heated, not vaporized.  Furthermore, a relatively small amount of butanol must be condensed on 
the permeate side.  This, coupled with butanol’s low heat of vaporization, requires less heat duty 
to accomplish the separation.

Pervaporation combines permeation and evaporation with good energy efficiency.  This 
technology is based on the different diffusion rates of specific components through the 
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membrane.  The feed flows across the inlet side of a hydrophobic membrane, and a portion of 
this stream is pulled through the membrane in vapor form.  A vacuum is applied on the opposite 
side of the membrane to increase mass transfer.  The permeate vapor is then condensed and 
collected.  The portion of the feed that does not diffuse through the membrane, the retentate,
consists mostly of water and is recycled and disposed15,16.

In Phase I, one-liter feed solutions containing varying amounts of butanol ranging from 10 g/L to 
50 g/L were prepared to test the pervaporation system.  This range of concentrations was chosen 
based on expectations of ABE fermentor effluent compositions. The bench-scale apparatus 
operated in a batch mode in which the feed was re-circulated through a heated 1-liter flask at 
55oC.  The pervaporator unit was sized for a 2-liter fermentor unit and was built by the 
department machinist.  A diagram of the unit is given in Figure 2.  The feed was pumped into the 
pervaporation housing and across the membrane.  Butanol selectively diffused through the 
membrane and condensed on the permeate side.  The condenser consisted of a glass cold finger 
immersed in a cooling liquid.  When the circulated batch run was completed, the condensate was 
collected and analyzed.

Pervaporation
Membrane

Peristaltic
Pump

Vacuum
Pump

Vacuum
Tank

Cold 
Finger

P Vacuum
Gauge

ABE/water

Cold 
Finger

Hot Plate

Figure 2. Pervaporation experimental apparatus schematic.

Several condenser solutions were tested including chilled brine, liquid nitrogen, and dry ice 
(CO2) in ethylene glycol.  The best results were obtained from the dry ice in ethylene glycol at    
-15oC.  The chilled brine solution failed to condense most of the permeate while the liquid 
nitrogen froze the condensate, plugging the vacuum.  The permeate and feed concentrations were 
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obtained using gas chromatography.  Experimental butanol fluxes from these tests are shown in 
Table 2.

Table 2: Butanol flux relative to feed concentration 
condensed in Dry Ice and Ethylene Glycol

Run BuOH Concentration 
in Feed (g/L)

BuOH Flux

(g/m2 hr)

1 9.3 11.4

2 20.0 15.7

3 26.82 58.9

4 49.62 85.4

Pilot Scale Design

After the pervaporation and fermentation experiments were performed, it was concluded from 
the results that food waste is a suitable feed stock for producing biobutanol.  The next step was to 
design a pilot-scale plant that would produce fuel grade biobutanol using the food waste from the 
University of Arkansas cafeterias.  The pilot-scale unit is designed to process 150 pounds of food 
waste per day and demonstrate production of a 95% butanol product by pervaporation.  The 
detailed design and operation for the pilot scale is discussed in section B.1 of this document.  

4. Discussion, Conclusions, Recommendations

Increasing the efficacy with which renewable fuels can be manufactured is a major step to 
decreasing the amount of fossil fuels imported and consumed in the United States. Biofuels 
manufactured from biomass, especially waste, are one viable way in which this can be 
accomplished.  Butanol has several benefits that make it a more desirable fuel than ethanol as 
mentioned above.  

Phase I proved the feasibility of using a fermentation reaction as the primary step in production 
of biobutanol from food waste.  Currently, carbohydrates, including sugars, starches, and even 
cellulose, can be used as the raw feed to produce alcohol-based fuels via microbial 
fermentations.  Food waste contains an adequate amount (approximately 40%) of these raw 
materials in a form easily utilized by the bacteria, as proven by the team’s food waste analysis.  

Phase I made substantial progress towards demonstrating the production of biobutanol from food 
waste.  First, the team was successful in producing butyric acid from food waste using the 
bacteria culture C. tyrobutyricum, which is closely related to C. beijerinckii.  Experimentation 
with C. beijerinckii is ongoing.  Pervaporation experiments were also successful. 

Based on Phase I research, biobutanol production via food waste is has potential to be a 
sustainable alternative fuel technology.  Experimentation on the fermentor residence time and 
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pervaporator operating conditions could increase the yield and profitability of the process.  Based 
on the life cycle analysis performed in Phase I, it is clear that the separation of butanol from the 
fermentor effluent is a critical step in improving the sustainability of the production process.  
Therefore more research is required to improve this technology.  Phase II proposes to do this by 
building a pilot-scale plant and gathering experimental data.

Phase I was successful in laying the groundwork for partnerships with several different 
organizations on the University of Arkansas campus.  The most important partnership 
established was with Chartwells, the campus dining service.  They were eager to provide food 
waste statistics as well as samples for the laboratory experiments.  Other individuals at the 
University have also been helpful with the research process.  Dr. Ya-Jane Wang from the Food 
Sciences department assisted in performing sugar and starch assays to determine the food waste 
composition.  Graduate students in the Chemical Engineering department have assisted the Phase 
I team in fermentor operation and troubleshooting.  Several letters of continued support are 
attached at the end of this document.

This project branches out to many areas, including chemistry, engineering, biochemistry, 
microbiology, and food sciences.  As a result of this project, Team REFUSE gained valuable 
experience in all of these areas.  The entire experience served to strengthen each individual team 
member’s engineering skills, which will be invaluable to them as they prepare to enter the 
workforce.  These skills include applying engineering design concepts as well as laboratory 
experimentation and data analysis.  Finally, the group environment fostered the development of 
interpersonal communication skills and teamwork. 
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B. Proposal for Phase II 

1. P3 Phase II Project Description

Relationship of Challenge to Sustainability (People, Prosperity, and the Planet)

People  
The proposal for a second phase of this project focuses on further developing the technology to 
convert food waste to fuel grade butanol.  The conversion of food waste into trasportation fuel 
has several societal benefits.  According to the Energy Information Administration, the United 
States currently imports 5 billion barrels of oil per year.  The production of fuel from locally 
available waste materials could reduce society’s dependence on imported fossil fuels.  If fuel was 
produced domestically, all of the economic benefits would supplement local economies as 
opposed to foreign economies.  Biobutanol plants partnered with university cafeterias could be 
used as a testbed to develop the technology necessary to produce butanol on an industrial scale.  
Furthermore, university-scale biobutanol plants could be utilized as an important educational tool 
for students and would help universities become more sustainable.  Currently the largest 500 
universities dispose of one million pounds of food waste per day. Using conversion ratios from 
Phase I, this could potentially amount to 1.5 million gallons of butanol per year.

Prosperity
The most significant short-term cost for the implementation of fermentation-produced butanol is 
the research required to make it a competitive alternate fuel. Specifically, further research is 
required in the areas of fermentor operating conditions and butanol separation, as well as 
pretreatment and types of feedstock.  Data from pilot scale studies on the University of Arkansas 
campus will allow an economic analysis to be performed for a full-scale plant, which would 
process approximately 1 ton of food waste per day at the UA.  Phase II of this project is an 
important intermediate step in the progression towards profitable industrial production of 
biobutanol.

Planet 
Production of butanol from food waste utilizes a waste feed stock to produce an environmentally 
friendly fuel alternative.  The current trend is to produce biofuels from crop-based feed stocks, 
primarily corn and soybeans. This requires extensive resources such as water, fertilizer, land, and 
energy for growth, harvest, and transportation.  Most importantly, using crops to produce fuel 
competes with human consumption.  In contrast, food waste only requires the energy involved in 
collection, transportation, and transformation to butanol.  The Life Cycle Assessment in Phase I 
proved the cradle-to-grave assessment of food waste to butanol was favorable over other 
alternate fuels.  

Converting food waste to biobutanol benefits the environment by reducing carbon emissions. 
Because of the large quantities of fossil fuels used today, sequestered carbon continues to be 
rapidly reintroduced into the environment.  It is clear that reducing consumption of non-
renewable resources like fossil fuels will be one of many critical steps on the path towards 
achieving sustainable consumption.  By using a waste stream as a feedstock for fuel production, 
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less fossil carbon will be reintroduced into the carbon cycle.  Furthermore, had the food waste 
been allowed to decompose naturally, it would have released methane into the atmosphere.  
Methane has a global warming potential that is 25 times greater than carbon dioxide.  In contrast, 
when a biofuel is combusted, carbon will be released in the form of carbon dioxide, which is less 
harmful to the environment than methane. Thus, making butanol from food waste not only 
reduces the amount of carbon emissions but also decreases the harmful environmental effects of 
these emissions.  

Challenge Definition and Relationship to Phase I

In Phase I, Team REFUSE proved that food waste could be successfully converted to butyric 
acid via the bacteria Clostridium tyrobutyricum. Research on a larger scale is necessary to the 
development of a full-scale design of a continuous, economically viable butanol fermentation 
process from food waste.  To achieve this goal a pilot-scale model has been designed that 
incorporates and builds upon the methods proven successful in Phase I.  

The pretreatment process in Phase I was a batch method in which each step was performed 
manually.  Phase II will also utilize a batch method, however, the pretreatment will be entirely 
mechanized.  The fermentation in Phase I was achieved in a Bioflow II reactor from New 
Brunswick Scientific.  In Phase II a custom fermentor will be built that models the Bioflow II 
reactor on a larger scale.  It incorporates agitation as well as pH and temperature control.  The 
main difference between the Phase I and II models is in the pervaporation unit.  In Phase II a 
portion of the reactor effluent will be purified by pervaporation; however, the final product will 
be a nearly pure organic mixture of butanol, ethanol and acetone (~95%). This will be 
accomplished by two pervaporation systems in series.  Once this purity is achieved, distillation to 
remove the remaining water is feasible.  

A new team of senior chemical engineering students will build and operate the pilot scale unit 
with guidance from faculty advisers.  In Phase II, the students will be able to gather data and 
optimize the process.  The first area of focus will be on increasing yield.  This will require an 
optimization between the residence time in the fermentor and the conversion of sugars and 
starches to butanol.  The students will also determine the most favorable operating conditions for 
the pervaporation system using a factorial experimental design to determine the optimum 
membrane flux.  The variables affecting the flux include temperature, flow rate, and vacuum 
pressure. Using the data collected from Phase II, the students will design a full-scale plant that 
could be implemented on any university campus.    

Innovation and Technical Merit

The idea of recycling waste to produce a useful product is not new, especially with sustainability 
being on the forefront of national attention; nor is the idea of using agricultural products to make 
fuel.  However, using a waste material as a feed stock to produce biobutanol has not been 
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researched.  This proposal is based on the premise that it is possible to produce biobutanol from 
food waste.  A process flow diagram of the Phase II pilot plant is shown in Figure 3.

Figure 3. Pilot Scale Process Flow Diagram

Overview of Process

This process is designed to convert 150 pounds per day of food waste from one of the cafeterias 
at the University of Arkansas to approximately 190 mL per day of biobutanol.  Each day a 
representative sample of food waste will be collected and transported to the Engineering 
Research Center (ERC) about five miles south of the main campus.  Phase II will be 
implemented during the fall semester 2009 by a team of Chemical Engineering Senior Design 
students.  The student team will construct a Phase II pilot-scale facility, gather experimental data, 
and design a facility to convert all University of Arkansas food waste to biobutanol.  The entire 
cost of the project including the pilot plant unit and operating expenses will be $74,164.  A 
breakdown of expenses can be found in the attached budget justification sheet.

Process Description

After each meal cafeteria employees will separate food waste from non-food items and collect 
random samples of the waste in six 5-gallon HDPE pails.  Once a day the six pails will be 
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transported via truck to the ERC.  At the ERC, each waste pail will be discharged into the 
garbage disposal (GD-101 in Figure 2).  

The garbage disposal has a water/food-waste slurry circulating at 12 gpm through the garbage 
disposal to a screen located horizontally across the vacuum filter receiver (Tk-101).  The purpose 
of the screen is to filter the large solids from the circulating slurry.  A vacuum is applied beneath 
the screen to assist the drainage of the slurry through the cake on the screen.  The circulation 
pump (p-101) is a positive displacement type which is required to handle the particulates and the 
moderate viscosity of the slurry.  Three 30-gallon batches will be processed per day.  After each 
batch is processed, the filtered solids will be scraped from the screen and sent to the sewer.

The food waste slurry (stream 4) is then sent to the sterilizer (v-101) to kill any pathogens 
present and to provide sufficient temperature and residence time to gelatinize the starches and 
complete the extraction of sugars.  The sterilizer is a 14.7 psig rated, 50 gallon, stainless steel 
pressure vessel.  Each 30-gallon batch is heated to 120 °C by injecting 25 pounds of 50 psig 
steam.  The batch is held at 120 °C for 20 minutes.  After sterilization, gelatinization, and 
extraction are complete the sterilized batch is pumped by the sterilizer discharge pump (P-102) at 
12 gpm to the sterilizer cooler (E-101) and through the re-circulating loop (stream 7) back to the 
sterilizer.  The sterilizer cooler consists of 75 feet of ½” OD copper tubing coiled into fifty 6” 
diameter coils.  The coil of tubing will be about 50” long and this coil will be fitted into an 8” 
diameter by 60” long PVC pipe.  Cooling water at about 3 gpm will be passed through the shell-
side of the coil-in-pipe heat exchanger.  After the slurry is cooled to 30 °C, the slurry will be re-
circulated through the membrane ultrafilter (F-101) to remove all solids from the fermentor feed.  
The permeate stream (stream 10) from the fermentor Feed Filter is discharged to the fermentor 
feed tank (Tk-201).  The filtration cycle is stopped when the permeate flow drops to 10% of its 
original value.  At this time the slurry remaining in the sterilizer vessel will be sent to the sewer.

The fermentor feed tank and fermentor (R-201) must be sterilized with a bleach/water mixture 
prior to operation.  The bleach must be re-circulated several times through the system before 
being drained.  After the bleach is drained, the system must be purged with deionized water.  The 
sterilization step is critical for removing all potential bacterial contaminants from the process. 

The fermentor will be fed from the fermentor feed tank at a maximum feed rate of 3 gallons per 
hour by a peristaltic feed pump (P-201).  The fermentor will be an agitated 55-gallon HDPE 
tank.  The agitator shaft will be sealed by means of an inexpensive water seal.  The maximum 
residence time for this vessel is 24 hours.  The bacteria Clostridium beijerinckii will process the 
food waste and produce acetone, butanol, and ethanol in a 3:6:1 volume ratio, respectively.  The 
fermentor effluent (stream 11) will be sent through the cell filter (F-201) to recover the bacteria 
cells and recycle them back to the fermentor (stream 12).  

The permeate stream (stream 13) leaving the cell filter will be split into two separate streams.  
Approximately one-ninth (1 L/h) of this stream will be fed to the first pervaporation system 
(stream 15), and the remainder (stream 14) will be sampled and properly disposed.  Both 
pervaporator units will be constructed from stainless steel and will use PDMS 
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(polydimethylsiloxane) membranes.  The first pervaporator (PV-301) will have a surface area of 
0.5 m2 and the second will have a 0.3 m2 area.  The retentate stream (stream 17), which contains 
excess water and any remaining sugars and starches, will be sent to the sewer.  The permeate 
from the first stage (stream 16) will be approximately 50 % butanol by mass.  This vapor stream 
will be sent to the first pervaporator condenser (E-301), which operates at 50 mmHg absolute.  
The permeate stream is condensed using a -10 °C brine-water mixture, which is circulated 
through the annulus side of a double-pipe condenser (stream 18).  The condensed permeate will 
be collected in the eight-quart permeate receiver (V-302).  Once per day, the Permeate Receiver 
will be emptied into the feed tank (V-303) for the second pervaporator (PV-302).  Prior to 
emptying the receiver, the second-pervaporator feed tank will be placed under vacuum via proper 
adjustment of the valves in the system.  

The condensate from the first stage (stream 21) will be fed to the second stage pervaporator.  The 
permeate vapor exiting the second pervaporator consists of a mixture that is 95 % butanol or 
greater (stream 22).  As with the first pervaporator, the retentate is sent to the sewer (stream 23).  
The second condenser (E-302) and vacuum system is identical to the first stage condenser 
system.  The condensed butanol product will be sampled and collected in an eight-quart vacuum 
receiver (V-304).

Measurable Results (Outputs/Outcomes), Evaluation Method, and Demonstration 
Strategy 

The primary goal of Phase II is to demonstrate the production of biobutanol from food waste on 
a pilot scale and evaluate the economic feasibility of this process.  One of the questions raised by 
the experimental results in Phase I was the potential benefit of the conversion of starches to 
butanol.  In Phase II Team REFUSE will determine the relationship between residence time and 
starch conversion.  Although a longer residence time will allow more of the starches to be 
converted to butanol, at a certain point the bacteria will actually begin to decrease butanol 
production due to a lack of sugars.  Experimentation in Phase II will determine the optimal 
balance between residence time and starch conversion.    

Experimentation is also needed to increase the effectiveness of the pervaporation system.  
Altering the vacuum pressure and feed temperature of the pervaporator unit will affect the flux 
through the membrane.  Increasing vacuum on the membrane or increasing the temperature of 
the liquid through the membrane will increase the flux.  When using a hydrophobic membrane 
increasing the component flux will increase the butanol concentration in the permeate stream.  

For Phase II there is a need to determine the composition of sugars, starches, and butanol at 
several different stages in the process.  Samples will be taken before the sterilization process and 
after the fermentor feed filter to monitor any change in sugar concentration. Another sample will 
be taken after fermentation to measure the composition of the crude product.  An additional 
sample will be taken from the pervaporator retentate to measure any unreacted sugars and 
starches.  Finally a sample will be taken of the purified butanol product.  The Food Science 
department will be contracted to perform starch and sugar assays.
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In Phase I of this project several corporate and community partnerships were explored.  A strong 
partnership has been developed with the university food service provider, Chartwells.  
Chartwells has promised to continue this partnership throughout Phase II by providing the team 
with food waste samples.  This partnership with Chartwells has also allowed us to establish a 
preliminary partnership with the University of Arkansas.  The University currently has a strong 
interest in promoting sustainability on campus.  Phase II will continue to build on these 
relationships established in Phase I as well as establish new relationships within the University.  
The University of Arkansas Sustainability Council has an ongoing mission of reducing the 
environmental impact of the University.  The students will be required to develop a university 
information and involvement plan that will explain this project’s contribution to sustainable 
energy.  In addition to this plan, the students will be required to prepare a detailed analysis of the 
regulatory environment in which the project will be implemented.  This analysis will include a 
determination of all waste products and an analysis of acceptable disposal methods for these 
wastes.  The development of the university involvement plan and environmental analysis will 
ensure that all parties involved are informed about and approve of the implementation of this 
project in their community.  If the project is a success, Team REFUSE will seek to publish the 
findings from Phase II.

Integration of P3 Concepts as an Educational Tool

Phase I was an effective educational tool because it required the design team to utilize a wide 
variety of skills including but not limited to engineering, economical, and biochemical 
understanding of the process. In addition, the students performed a cradle to grave LCA for the 
production of butanol from food waste. With the international emphasis on sustainability, LCA is 
becoming an increasingly common tool. Exposing students to systems scale environmental 
assessments provides them a valuable perspective as they enter industry. The task given to the 
students in Phase I was to choose a sustainable and economical feed stock for butanol production 
and to perform bench-scale tests of the fermentation and separation of the butanol product from 
the fermentation broth.    

Phase II of this project will continue to enrich the educational experience of students involved in 
the project.  For this phase, the design team will scale up the bench scale system evaluated in 
Phase I into an operational pilot plant.  The students will collect data and optimize the process to 
maximize its efficiency.  The student team will perform this work as a requirement for their 
senior capstone design course.  The detailed design, construction, and operation of this plant will 
give the students invaluable experience in applying their academic knowledge to a real-world 
situation.  The pilot plant built and the research performed in Phase II has great potential to 
extend beyond the capstone design course requirements.  This project would be well-suited for 
individual students, both undergraduate and graduate, to continue research.  Plans are already in 
place for graduate students to continue research in the production of biobutanol from food waste 
after the pilot unit is built.
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Phase II addresses the interests of a university campus in becoming more sustainable in an 
innovative and creative manner.  The University of Arkansas currently disposes of 
approximately seven tons of food waste each week.  This waste is sent directly to the sewer. The 
approach of producing biobutanol from food waste is a new way of partnering with a university 
campus to reduce waste and produce a valuable product.

If Phase II is successful, a full-scale process will be designed that can be implemented on any 
university campus.  The team will propose this design to the University of Arkansas 
Sustainability Council as a working model of a sustainable method to dispose of food waste, 
targeting an increased awareness of the availability and creative utilization of renewable 
resources.  Using food waste from the University cafeterias as a feedstock for the biobutanol 
plant will demonstrate both the creative application of a renewable resource as well as the 
reduction of waste output.  All of these aspects will combine to create a rich educational 
experience for the Phase II team and to increase the awareness of environmental sustainability to 
all University of Arkansas students.    

2. Project Schedule

Task 1:  Review Phase I Work
The Team REFUSE students will review the work completed by the Phase I team and make any 
changes to the design they deem necessary. 

Task 2:  Grow Clostridium Culture
Due to the difficulty of growing C. beijerinckii bacteria culture, growth of this culture will begin 
immediately.

Task 3:  Purchase Pilot Plant Components
Students will purchase all of the components for the pilot plant using the process flow diagram 
and the itemized budget proposed by the Phase I team.

Task 4:  Construction of Pilot Plant Unit
Students will construct a pilot plant at the Engineering Research Center (ERC) with faculty 
guidance.

Task 5:  Start-up
Students will test all processes in the plant for proper functionality.

Task 6:  Plan for waste food collection
Students will work with their individual schedules and Chartwells schedules to set up a plan for 
waste collection. 

Task 7:  Test Full Scale
Students will work for four weeks to test the pilot plant on a continuous daily basis.  One week 
with regular media, and then three weeks with food waste.
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Task 8:  Economic Analysis
The team will continue to evaluate the economical viability utilizing the information from the 
pilot plant.

Task 9:  Report Results
The experimental results of Phase II will be documented. These findings as well as a university 
scale model of a biobutanol production facility will be presented to the University of Arkansas 
Sustainability Council.  If applicable, the students will work towards publication of their results. 

Figure 4. One year Project Schedule

3. Partnerships 

The most significant partnership developed in Phase I was with Chartwells.  Team REFUSE 
approached Chartwells with a request to collect food waste from one of the campus cafeterias for 
use in the Phase I bench-scale research.  They were eager to work with the team and supply 
samples of food waste as well as statistical data.  They have also written a letter of support 
regarding Phase II.  In Phase II, Chartwells would provide approximately 150 pounds of food per 
day from one of the cafeterias to be used in the pilot plant.  This partnership is the first step in 
working with the University of Arkansas to promote waste reduction and sustainability on 
campus.  If successful, Team REFUSE will design a model for an operation that could be 
implemented on any University campus.

Team REFUSE will also be working closely with the Ralph E. Martin Department of Chemical 
Engineering here at the University of Arkansas to continue researching biobutanol from food 
waste.  The department has written a letter of support for Phase II pledging to allow Team 
REFUSE access to laboratory space in the Engineering Research Center.  This space will be used 
to house the Phase II pilot-scale model.  The department has also given their full support to using 
Phase II as credit for the honors section of the senior capstone design course (CHEG 4443).  The 
department is fully committed to utilizing this project as an educational tool for its chemical 
engineering students.
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III. SUPPORTING LETTERS
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                                 SUSTAINABILITY COUNCIL

To: US EPA P3 selection team

From: Nicholas R. Brown PhD

Executive Assistant for Sustainability

Re: support for University of Arkansas Team REFUSE

Date: 12 March 2009

I am pleased to give my recommendation to the project presented by the University of 
Arkansas Team REFUSE to the 2009 EPA P3 Competition.

Team REFUSE has worked hard during their collegiate careers to succeed in a 
challenging and demanding academic program, and their diligence has extended to their 
efforts for this competition.  They have a strong desire to incorporate sustainability into 
the world of professional engineering.  They’ve collaborated with the UA Sustainability 
Council and other organizations across campus to bring us all a step closer to a renewable 
and sustainable fuel source.

The University of Arkansas looks forward to the findings of this team, and hopes to 
incorporate their successful results into our continuing research programs. 
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IV. BUDGET AND BUDGET JUSTIFICATION

Personnel
No costs supported under this solicitation.

Fringe Benefits
No costs supported under this solicitation.

Travel
The students taking part in the construction and operation of this pilot facility will be traveling to 
Oklahoma City to attend and present their findings at the 2-day GROW Oklahoma Biofuels 
Conference.  This will cost about $3,590 which was calculated for a 7 member team and one 
advisor spending 2 nights in 5 hotel rooms at $150/night.  Added to this was $1,176 in meals for 
the team for 3 days as well as $114 for a rental van and $800 in registration fees.

Equipment
$16,150 is allocated to major pieces of equipment.  Included in this amount is $2,755 for a 560 
gallon, conical-bottom tank for holding the feed to the fermentor.  $2,500 is allotted for 
construction of a one-half square meter pervaporator unit to be built in the Chemical Engineering 
shop.  A refrigeration unit will be purchased for $3,900 for cooling the fluid used in condensing 
the vapor from the pervaporators.  A data acquisition system costing $3,995 will be used to 
gather temperature, pressure, and pH data from the system and send them to a central computer 
for recording.  An optical density measurement system will also be purchased for $3,000 to 
monitor cell growth in fermentor.  Also included is 10% of the major equipment cost for any 
pricing contingencies making the total $17,765.

Supplies
The majority of the money in the proposal, $31,267, is allocated for supplies.  Major 
contributions to the total for supplies include a 2-hp industrial garbage disposal, two stainless 
steel vessels, twelve membrane ultrafilters, a pH pump control system, and a computer for data 
analysis.  Other minor supplies include pumps and piping.  Again 10% was added for any pricing 
contingencies, making the total for supplies $34,397.

Contractual
No contractual costs are needed as part of this solicitation.

Indirect Costs
The indirect costs will be 42% of the total direct costs. This is per our University policy.
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