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Title: How Imbalanced Excitation and Inhibition May Cause Low Entropy Brain Dynamics      

 

Introduction: 

In the United States of America, there has been an increase in the prevalence of Autism.  

Its prevalence was about 1 in 150 in the year 2000, but now it is roughly 1 in 88 [1]. Autism is a 

severe neurobehavioral syndrome caused by genetic disorders [2].  Autism is more common 

among boys. It affects 4 times as many boys as girls [2]. Autism causes disruption in behavior, 

emotion, and cognition. Autism is defined and diagnosed based on three behavioral 

characteristics: impaired language, abnormal social interactions, and restricted/repetitive 

behavior [3, 4]. In this project, we hypothesize that Autism might be associated with low entropy 

neural network dynamics.  The basic logic underlying this hypothesis is as follows.  First, 

behavior is generated by neural network dynamics.  Therefore, restricted/repetitive autistic 

behavior is expected to be generated by restricted/repetitive neural network dynamics.  By the 

definition of entropy, restricted/repetitive neural network dynamics have low entropy compared 

to less restricted, more diverse neural network dynamics.   

Another important reason for our hypothesis stems from evidence that autism may be 

caused by an imbalance between two types of neurons in the brain: excitatory and inhibitory.  

Previous work has shown that such an imbalance can cause low entropy neural network 

dynamics as well [8].  Therefore, the mechanism which causes low entropy in autistic brain 

circuits may be imbalanced excitation and inhibition.   

Before discussing evidence for such an imbalance in autism, I will first provide more 

background on what it means for excitation and inhibition to be balanced. Neurons are the basic 

units of neural networks and they transmit signals to each other via using neurotransmitters, 
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which are chemical messengers. The basic structure of neuron is composed of a cell body, 

dendrites, and an axon. The cell body contains the nucleus and receives the chemical message 

via input to the dendrites. Then the cell body converts the chemical message into and electrical 

signal. As a result, potential change in the cells membrane potential will be generated. If the 

membrane potential goes above the threshold, then the neuron generates an action potential, 

which is an electrical signal that propagates down the axon and reaches the axon terminal. Then 

the neurotransmitters at the axon terminal will be released to the synapse. The synapse is the 

connection point between each neuron.  Neurons are either excitatory or inhibitory. Both types 

generate action potentials, but the main difference between them is the neurotransmitter that each 

type uses. Excitatory neurons excite other neurons, i.e. make them more likely to fire an action 

potential, by releasing the neurotransmitter Glutamate, but inhibitory neurons inhibit or prevent 

firing of other neurons by releasing the neurotransmitter Gamma-Aminobutyric acid, also known 

as GABA. Within the brain there must exist a balance between excitatory and inhibitory neuron. 

In a normal cerebral cortex, about 80% of the neurons are excitatory and 20% of the neurons are 

inhibitory [2]. An increase in excitation over inhibition can lead to a hyper-excitable state, which 

causes epilepsy [2]. Thus, the balance of excitation and inhibition signals is important for normal 

functioning of the brain [6].  

Next I will review theories and experimental evidence that autism is linked with 

imbalanced excitation and inhibition.  Autistic individuals have abnormal perceptions due to 

defects in cortical networks [4]. One theory of autism suggests that hyper functioning in the brain 

occurs when neuronal networks in a certain region of the brain process and store information 

excessively [5]. As a result, hyper-perception, hyper-attention, and hyper-memory are caused by 
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the defect in those certain brain regions [5]. Hyper-excitability can be the result of excitation 

inhibition imbalance [5].  

The lack of balance between those two types of neurons can cause the brain to 

malfunction, such as inability to properly control the body or negatively affect cognition 

development, which autistic individuals suffer from. Excitation/inhibition circuit dynamics have 

an effect on critical stages of brain development [3]. Abnormal synapse, either weak or strong, 

can affect the balance of excitation/inhibition ratio [7]. Abnormal synapse strength can be caused 

by protein deficiencies or mutations which results in weak synapse input [7]. Reduced excitation, 

due to weak input at the synapse, may result in an increase in inhibition. As a result, an 

imbalance between excitation and inhibition will form [7].   Together, these previous studies 

suggest that an imbalance of excitation and inhibition may be an underlying cause of autism. 

The goal of this project is to determine how brain entropy changes due to changes in 

excitation/inhibition balance in the brain using a computer model. Entropy in this context 

quantifies how many different patterns of activated neurons the brain can create.  The computer 

model used in this project is more biologically realistic than previous models used in projects 

that are similar to this project. The goals of this project were the following:  

1. Observe and determine the relationship between entropy and the number of observed 

neurons. This is important, because in experiments one can never measure the activity 

of all neurons in a network. We varied the size of the subset of neurons and quantified 

how entropy changes. 

2. Determine the relationship between entropy and the percent of inhibitory neurons (I) 

in the network. In healthy mammals this number is about I=20%, but in some autism 
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animal models, excess inhibitory neurons were found. We varied I from 0 to 40% and 

measured resulting changes in entropy. 

3. Determine the relationship between the strength of inhibitory connections (Im) and 

entropy. Here, we kept the percentage I fixed and multiplied the inhibitory 

connections by a number between 0 and 2 and measured changes in entropy. 

 

The Computer Model:  

The computer model in this project is composed of several parts that work together to 

function as a simple brain model. This brain model is not intended to include the complexity of 

an actual human being brain. The goal of this computer model is to provide insight on how 

changing the strength or numbers of inhibitory neurons changes entropy of neural network 

dynamics. This computer model code can be found in Appendix A. 

 We created our simple network model using Matlab. We set the total number of neurons, 

N, in our model equal to 500. Those 500 neurons may be considered to represent a small network 

within the brain, which contains approximately 10 billion neurons. In reality, neurons generate 

action potentials. As described previously, action potentials propagate down the axon of a neuron 

until it reaches the synapse and cause neurons to generate electrochemical signals, known as 

neurotransmitters. In this computer model, a neuron will be either active (analogous to firing an 

action potential) or in-active (analogous to a quiescent neuron), where an active neuron is 

assigned a value of 1 and an inactive neuron is assigned a value of 0. Within the neural network, 

the connection between neurons vary in strength, and neuron firing is determined by these 

connection strengths. For example, if the strength of connection between neuron A and neuron B 

is high and If neuron A generates an action potential, then neuron B will most likely generate an 
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action potential due to that high connection strength. In this computer model, we created a 

connection matrix, C, that represents the connection strengths among neurons. In matrix C, the 

connection between neuron A and neuron B is CAB. We create the matrix by filling the whole 

matrix with zeros, i.e. no connections are present initially. Then, we modify 5% of the 

connections’ strength to be non-zero. The connection strength is chosen randomly using a 

uniform distribution. To model inhibitory connections in our model, we set 20% of matrix C 

columns to be negative values. The last step to creating the connection matrix is to enforce the 

eigenvalue of the connection matrix. We set the largest eigenvalue in the matrix equal to 1. The 

reason we set it to 1 is that we want to prevent a growing or decaying number of active neurons 

and enforce a balanced excitation inhibition. This is the baseline connection matrix before 

changing any inhibitory connection strengths, i.e. before changing Im. Next, we use the equation 

below in order to model the dynamics of our neural network. 

 

                𝑠𝑖(𝑡 + 1) = 𝜃[∑ 𝐶𝑖𝑗𝑠𝑗(𝑡) − 𝜁𝑖(𝑡)𝑁
𝑗=1 ],  (1) 

Where si(t) is the state of neuron i at time t, ϴ[x] is a Heaviside step function (𝛳[𝑥] = 0 for x ≤

0, 𝛳[𝑥] = 1 for x > 0 ), ζ is a random number between 0 and 1drawn every time a neuron is 

updated, and N is the total number of neurons in our system (500). The neural activity at time t+1 

is determined by the summation of the neural input at time t. real synapsis unpredictably fail 

sometimes and that is the reason we use ζ in this model. ζ  , is a random value, will represent the 

unpredictable nature of real synapses in our model.  

Next, we want to determine the effect of the strength of inhibitory neurons on entropy using 

the model. In our model, we modify, increase or decrease, the strength of inhibition by multiplying 

all the inhibitory connections in the connection matrix, C, by a constant Im. Im ranges from 0 to 2, 
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where Im =1 is considered to be a normal inhibition. Im < 1 represents reduced inhibition, and Im > 

1 represents increased inhibition, relative to the balanced condition. 

The activity of the neural network for Im=1 and I=20 % is shown in figure 1 below.    

 

 

 

 

 

 

 

 

 

         As mentioned previously, entropy quantifies how many different patterns of activated neurons the 

brain can create. The entropy of the brain can be calculated using the equation below. 

                𝐻 = −[∑ 𝑃𝑖𝑙𝑜𝑔2(𝑃𝑖)𝑚
𝑗=1 ]  (2) 

Where, m = the number of unique patterns of activity and 𝑃𝑖= the probability of pattern i. 

 

Before we start adjusting the strength of inhibition within the neural network, we decided 

to determine the number of subset of neurons that will result in the largest possible value of 

entropy. As shown in figure 2 below, the entropy maximizes at a subset of neurons that contains 

25 neurons or more. This is because more than about 25 neurons every pattern is unique and 

entropy cannot exceed the value for all unique patterns. Therefore, for the remainder of this study, 

FIGURE 1 – Activity of Neurons and Entropy. 

Shown is the number of active neurons vs. time, and the calculated entropy for 

the network series.  Activity S(t), and entropy H=13.1909  for the condition of 

Im=1 modulated inhibition.   
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we computed entropy from a subset of 10 neurons to avoid the regime with all unique patterns 

where entropy cannot change.  

 

 

 

 

 

 

Next, we decided to observe the effect of percent of inhibitory neurons in the brain on 

entropy. The figure below shows the effect of different percent of inhibitory neurons, ranging 

from 5% to 40%, on entropy of the brain at Im values ranging from 0 to 2.  

FIGURE 2 – Effects of the number of subset of neurons on overall neural Entropy 
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Shown is the number of subset of neurons vs. Entropy. 

Shown is the percent of inhibitory neurons vs. calculated Entropy at various Im values ranging from 0 to 

2. Each curve represent I values ranging from 5% to 40% (as shown in the percentage box in the figure).   

FIGURE 3 – Effects of changing precent of inhibitory neurons on Entropy at values of Im ranging 

from 0 to 2. 
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From figure 3 above, we concluded that brains with 25 percent or more inhibitor neurons 

will have lower entropy. Also, the figure shows that the ideal percentage of inhibitory neurons in 

the brain is approximately 20 percent, which is proven by other research.  

Next, we decided to observe how consistent or variable brain entropy is across a single 

individual. The figure below shows average entropy vs Im and I for many repetitions over 100 

different brains. 

 

Figure 4 above shows that the mean entropy over a 100 different brains is highest at 

approximately I=20% and Im=1.  

 

FIGURE 4 – Average H (color) vs Im and I  

The numbers on the axes do not correspond to Im and %I. Rather, the horizontal axis ranges from 

I=0% to 40% in 72 steps. The vertical axis ranges from Im=0 to 2 in 43 steps. 
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Figure 5 below shows the standard deviation of entropy vs. I and Im for many repetitions of 100 

different brains.  

 

Figure 4 above shows that the mean standard deviation of entropy over a 100 different 

brains is lowest at approximately I=20% and Im=1.  

 

 

 

 

 

 

 

FIGURE 5 – Mean Standard deviation of H (color) vs Im and I  

The numbers on the axes do not correspond to Im and %I. Rather, the horizontal axis ranges from 

I=0% to 40% in 72 steps. The vertical axis ranges from Im=0 to 2 in 43 steps. 
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Summary and Conclusions: 

 In conclusion, we used our simple neural network model to observe and study the effects 

of varying inhibition and the strength of inhibitory connections. In similarity with what we 

expected, we found that entropy is highest under balanced neural network conditions which 

consist of approximately 80% excitatory neurons and a 20% inhibitory neurons at a strength of 

inhibitory connections with a value that is equal to 1, according to our model. In the context of 

entropy, high entropy implies the ability to store more information within the neural network, 

normal development of the brain, and a good ability to perceive a good range of stimuli from the 

surroundings. Considering high entropy to be in favor of animal survival, we meditate that 

evolution plays a role in the survival of those animals. Evolutionary pressures or Natural 

selection may result in brains with high entropy and balanced neural network. Finally, we predict 

if entropy is advantageous to us, then our results indicate that high entropy that a narrow range of 

I=20% and Im=1 both express high entropy. Also, our low standard deviation plot for mean 

entropy implies high reliability for high entropy at I=20% and Im=1. Also, when considering 

Autism and its symptoms, our results show that an Imbalance neural network causes low entropy 

and unreliable brain. Thus, we predict that low entropy is one of the causes to the disorder.  
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Appendix A: Matlab Computer Model of Brain with Changing Inhibition 

 

Matlab Computer Model Version 1: 

%basic E/I model 
clear 

  
plotflag=1; %set to 1 to show the results in a plot (very slow, but 

informative), otherwise set to 0 

  
N=500;  %total number of neurons 
T=10000; %duration of simulation 

  
%%%%%%%% make the connection matrix %%%%%%%%%% 
C=rand(N);  
imask=rand(1,N)<=0.2;       %define 20% inhibitory neurons 
C(:,imask)=-1*C(:,imask);   %set outgoing connection from inhibitory neurons 

to be negative 
k=0.05;                     %mean degree N*k 
C(rand(N)>k)=0;             %set mean degree  

  
% get largest eigenvalue 
eigvec=ones(N,1); 
NN=1000; 
eigval=zeros(1,NN); 
converg=zeros(1,NN); 
for i=1:NN; 
    eigvec2=C*eigvec; 
    eigval(i)=mean(eigvec2./eigvec); 
    converg(i)=sum(abs(eigvec2-eigvec*eigval(i))); 
    eigvec=eigvec2./sum(abs(eigvec2))*N; 
end 

  
%enforce largest eigenvalue = 1 
C=C/eigval(end); 
%%%%%%%% done making the connection matrix %%%%%%%%%% 

  
%IfacList=1; 
IfacList=[0.5 0.7 0.9 0.95 1 1.05 1.10 1.2]; 
%IfacList=[0 0.5 0.7:0.05:1.1 1.2 1.5 2]; 
nifac=length(IfacList); 

  
for i=1:nifac 

  
    B=C; 
    B(:,imask)=IfacList(i)*B(:,imask); 

     
    nREP=10; 
    H=zeros(1,nREP); 
    for R=1:nREP 
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        nev=false(N,T);  %initialize matrix for storing activity of all 

neurons during one simulation 

         
        %%%%%%%% compute the activity of the network %%%%%%%%%% 

  
        %initial condition: activate Ni neurons in first timestep                                       
        nev(1:N/2,1)=1; 

  
        %evolve dynamics: probabilistic spike propagation 
        t=1;  
        while t<T  %stop computing if we reach T steps 

  
            nev(:, t+1) = B*nev(:,t)>rand(N,1); %determine which neurons fire 

in the next time step 

             
            %if the activity dies out, restart it 
            if sum(nev(:,t+1))==0 
                [~,rind]=sort(rand(1,N)); 
                nev(rind(1),t+1)=1; 
                restart(t+1)=1; 
                disp('restart') 
            end 

  
            t=t+1;              
        end 
        %%%%%%% done computing the activity of the network %%%%%%%%%% 

  
        sumn=sum(nev,1); 

         
        %compute entropy estimate H from a subset of neurons 
        nsub=20; 
        subset=nev(1:nsub,:)'; 
        [~,~,j]=unique(subset,'rows'); 
        npat=max(j); 
        p=histc(j,0.5:npat+0.5)/T; p(end)=[]; 
        H(R)=-sum(p.*log2(p)); 

  
        %display results if plotflag is set to 1 
        if plotflag  
            %show basic activity versus time 
            figure(1) 
            title('Activity vs Time') 
            subplot(311) 
            imagesc(nev,[0 2]) 
            ylabel('neuron #') 
            xlabel('time') 

  
            subplot(312) 
            plot(sumn) 
            ylabel('number of active neurons') 
            xlabel('time') 

             
            title(H(R)) 
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            pause 
        end 

     
    end 

  

  
end 

 

Matlab Computer Model Version 2: 

%basic E/I model 
clear 

  
plotflag=0; %set to 1 to show the results in a plot (very slow, but 

informative), otherwise set to 0 

  
N=500;  %total number of neurons 
T=10000; %duration of simulation 

  
%%%%%%%% make the connection matrix %%%%%%%%%% 
C=rand(N);  
imask=rand(1,N)<=0.2;       %define 20% inhibitory neurons 
C(:,imask)=-1*C(:,imask);   %set outgoing connection from inhibitory neurons 

to be negative 
k=0.05;                     %mean degree N*k 
C(rand(N)>k)=0;             %set mean degree  

  
% get largest eigenvalue 
eigvec=ones(N,1); 
NN=1000; 
eigval=zeros(1,NN); 
converg=zeros(1,NN); 
for i=1:NN; 
    eigvec2=C*eigvec; 
    eigval(i)=mean(eigvec2./eigvec); 
    converg(i)=sum(abs(eigvec2-eigvec*eigval(i))); 
    eigvec=eigvec2./sum(abs(eigvec2))*N; 
end 

  
%enforce largest eigenvalue = 1 
C=C/eigval(end); 
%%%%%%%% done making the connection matrix %%%%%%%%%% 

  
IfacList=[0 0.5 0.7:0.05:1.1 1.2 1.5 2]; 
nifac=length(IfacList); 

  

  
nREP=10; % with our model so far # of repetitions did not affect the out come 

of H,   
H=zeros(nifac,nREP); 

     
for i=1:nifac 
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    B=C; 
    B(:,imask)=IfacList(i)*B(:,imask); 

     
    for R=1:nREP 
        disp(['rep=',num2str(R),'..Im=',num2str(i)]) 

         
        nev=false(N,T);  %initialize matrix for storing activity of all 

neurons during one simulation 

         
        %%%%%%%% compute the activity of the network %%%%%%%%%% 

  
        %initial condition: activate Ni neurons in first timestep                                       
        nev(1:N/2,1)=1; 

  
        %evolve dynamics: probabilistic spike propagation 
        t=1;  
        while t<T  %stop computing if we reach T steps 

  
            nev(:, t+1) = B*nev(:,t)>rand(N,1); %determine which neurons fire 

in the next time step 

             
            %if the activity dies out, restart it 
            if sum(nev(:,t+1))==0 
                [~,rind]=sort(rand(1,N)); 
                nev(rind(1),t+1)=1; 
                restart(t+1)=1; 
                disp('restart') 
            end 

  
            t=t+1;              
        end 
        %%%%%%% done computing the activity of the network %%%%%%%%%% 

  
        sumn=sum(nev,1); 

         
        %compute entropy estimate H from a subset of neurons 
        nsub=10; 
        subset=nev(1:nsub,:)'; 
        [~,~,j]=unique(subset,'rows'); 
        npat=max(j); 
        p=histc(j,0.5:npat+0.5)/T; p(end)=[]; 
        H(i,R)=-sum(p.*log2(p)); 

  
        %display results if plotflag is set to 1 
        if plotflag  
            %show basic activity versus time 
            figure(1) 
            subplot(311) 
            imagesc(nev,[0 2]) 
            ylabel('neuron #') 
            xlabel('time') 

  
            subplot(312) 
            plot(sumn) 
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            ylabel('number of active neurons') 
            xlabel('time') 

             
            title(H(i,R)) 

  
            %pause 
        end 

     
    end 

  

  
end 

  

  
%% 
figure(2) 
plot(IfacList,H) 

 

Matlab Computer Model Version 3: 

%basic E/I model 
clear 

  
plotflag=0; %set to 1 to show the results in a plot (very slow, but 

informative), otherwise set to 0 

  
N=500;  %total number of neurons 
T=10000; %duration of simulation 

  
%%%%%%%% make the connection matrix %%%%%%%%%% 

  
brain=[ .05:.005:.25] 

  
b=length(brain) 

  
IfacList=[0 0.5 0.7:0.05:1.1 1.2 1.5 2]; 
nifac=length(IfacList); 

  
% define H here 
H=zeros(nifac,b) 
%% start loop here 
for e=1:b 

     
C=rand(N);  
imask=rand(1,N)<=brain(e);       %define % of inhibitory neurons 
C(:,imask)=-1*C(:,imask);   %set outgoing connection from inhibitory neurons 

to be negative 
k=0.05;                     %mean degree N*k 
C(rand(N)>k)=0;             %set mean degree  

  
% get largest eigenvalue 
eigvec=ones(N,1); 
NN=1000; 
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eigval=zeros(1,NN); 
converg=zeros(1,NN); 
for i=1:NN; 
    eigvec2=C*eigvec; 
    eigval(i)=mean(eigvec2./eigvec); 
    converg(i)=sum(abs(eigvec2-eigvec*eigval(i))); 
    eigvec=eigvec2./sum(abs(eigvec2))*N; 
end 

  
%enforce largest eigenvalue = 1 
C=C/eigval(end); 
%%%%%%%% done making the connection matrix %%%%%%%%%% 

  
IfacList=[0 0.5 0.7:0.05:1.1 1.2 1.5 2]; 
nifac=length(IfacList); 

  
% change nrep to 1 
nREP=1;  

  

     
for i=1:nifac 

  
    B=C; 
    B(:,imask)=IfacList(i)*B(:,imask); 

     
    for R=1:nREP 
        disp(['brain=',num2str(e),'..Im=',num2str(i)]) 

         
        nev=false(N,T);  %initialize matrix for storing activity of all 

neurons during one simulation 

         
        %%%%%%%% compute the activity of the network %%%%%%%%%% 

  
        %initial condition: activate Ni neurons in first timestep                                       
        nev(1:N/2,1)=1; 

  
        %evolve dynamics: probabilistic spike propagation 
        t=1;  
        while t<T  %stop computing if we reach T steps 

  
            nev(:, t+1) = B*nev(:,t)>rand(N,1); %determine which neurons fire 

in the next time step 

             
            %if the activity dies out, restart it 
            if sum(nev(:,t+1))==0 
                [~,rind]=sort(rand(1,N)); 
                nev(rind(1),t+1)=1; 
                restart(t+1)=1; 
                %disp('restart') 
            end 

  
            t=t+1;              
        end 
        %%%%%%% done computing the activity of the network %%%%%%%%%% 



19 
 

  
        sumn=sum(nev,1); 

         
        %compute entropy estimate H from a subset of neurons 
        nsub=10; 
        subset=nev(1:nsub,:)'; 
        [~,~,j]=unique(subset,'rows'); 
        npat=max(j); 
        p=histc(j,0.5:npat+0.5)/T; p(end)=[]; 
        H(i,e)=-sum(p.*log2(p));  

  
        %display results if plotflag is set to 1 
        if plotflag  
            %show basic activity versus time 
            figure(1) 
            subplot(311) 
            imagesc(nev,[0 2]) 
            ylabel('neuron #') 
            xlabel('time') 

  
            subplot(312) 
            plot(sumn) 
            ylabel('number of active neurons') 
            xlabel('time') 

             
            title(H(i,R)) 

  
            %pause 
        end 

     
    end 

  

  
end 

  
end 
%% end it here  
%% 
figure(2) 
plot(IfacList,H) 
xlabel('I_m') 
ylabel('H') 
legend('5.0%','10%','15%','20%','25%','30%','35%','40%') 

  
figure(3) 
imagesc(H) 
xlabel('% inhibitory neurons') 
ylabel('I_M inhibition modulation factor') 
colorbar 
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Matlab Computer Model Version 4: 

%basic E/I model 
clear 

  
plotflag=0; %set to 1 to show the results in a plot (very slow, but 

informative), otherwise set to 0 

  
N=500;  %total number of neurons 
T=5000; %duration of simulation 

  
alphalist=[.05:.005:.40]; % Originally was [0.05:0.01:0.25] 
b=length(alphalist); 

  
IfacList=[0:0.05:2];%[0 0.5 0.7:0.05:1.1 1.2 1.5 2]; 
nifac=length(IfacList); 

  
nREP=100; 

  
sponr=1/N/100; 

  
k=0.05;                     %mean degree N*k 

  
H=zeros(nifac,b,nREP);  

  
for R=1:nREP 

   
    for alpha=1:b 

     
        disp(['rep=',num2str(R),' alpha=',num2str(alpha)]) 
        for i=1:nifac 

             
            %make a new brain for every rep, every parameter set 
            B=rand(N);  
            imask=rand(1,N)<=alphalist(alpha);  %define % of inhibitory  

  neurons 
            B(:,imask)=-1*B(:,imask);   %set outgoing connection from   

  inhibitory neurons to be negative 
            B(rand(N)>k)=0;             %set mean degree  
            B=B/max(abs(eig(B)));       %enforce largest eigenvalue = 1 
            B(:,imask)=IfacList(i)*B(:,imask); 

  
            nev=false(N,T);  %initialize matrix for storing activity of all  

  neurons during one simulation 

  
%%%%%%%% compute the activity of the network %%%%%%%%%% 

  
            %initial condition: activate Ni neurons in first timestep                                       
            nev(1:N/2,1)=1; 

  
            %evolve dynamics: probabilistic spike propagation 
            t=1;  
            while t<T  %stop computing if we reach T steps 
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              nev(:, t+1) = B*nev(:,t)>rand(N,1); %determine which neurons  

    fire in the next time step 

  
              %random activation at rate of one spike among all neurons  

     every 100 timesteps 
               nev(rand(N,1)<sponr,t+1)=1;  

  
                t=t+1;              
            end 
            %%%%%%% done computing the activity of the network %%%%%%%%%% 

  
            sumn=sum(nev,1); 

  
            %compute entropy estimate H from a subset of neurons 
            nsub=10; 
            subset=nev(1:nsub,:)'; 
            [~,~,j]=unique(subset,'rows'); 
            npat=max(j); 
            p=histc(j,0.5:npat+0.5)/T; p(end)=[]; 
            H(i,alpha,R)=-sum(p.*log2(p)); %%%%check this for 3D 

  
            %display results if plotflag is set to 1 
            if plotflag  
                %show basic activity versus time 
                figure(1) 
                subplot(311) 
                imagesc(nev,[0 2]) 
                ylabel('neuron #') 
                xlabel('time') 

  
                subplot(312) 
                plot(sumn) 
                ylabel('number of active neurons') 
                xlabel('time') 

  
                title(H(i,alpha,R)) %%%%%%%%%%%%%%%% ask about this one if 

H(i,e,R) is correct? 

  
                %pause 
            end 
        end 
    end 
end 
save('Hmany','H') 

  
%% 
mH=mean(H,3); 
stdH=std(H,0,3); 

  

  
figure(3) 
imagesc(mH) 
xlabel('% inhibitory neurons') 
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ylabel('Mean of I_M inhibition modulation factor') 
colorbar 

  
figure(4) 
imagesc(stdH) 
xlabel('% inhibitory neurons') 
ylabel(' Std Deviation I_M inhibition modulation factor') 
colorbar 
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