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1. Abstract  

 The goal of this project is to develop a more efficient biofuel cell with the 

use of mediators and modification of electrode surfaces. This project focuses on 

a mediator, ferroceneaceticc acid (FcAA), which is expected to assist the transfer 

of electrons between the electrode surface and enzyme, resulting in a more 

efficient cell. This project is aimed toward the electropolymerization of monomer, 

coupling of mediator to monomer, and electropolymerization of mediator-

monomer product. The monomer, hydroxymethyl 3,4-ethylenedioxythiophene 

(HMEDOT), was successfully polymerized onto the surface of a gold electrode 

using a solution of 0.01 M HMEDOT, 0.001 M β-CDSS, and ultrapure 18.2 

MΩ*cm water from 0.0 V to 1.2 V at a scan rate of 5 mV/s. Coupling of the 

mediator, ferroceneacetic acid (FcAA), to the monomer, HMEDOT, using an 

esterification procedure was attempted. Future work is needed in order to 

optimize the coupling of FcAA to HMEDOT and to verify the product of the 

esterification. The product can then be electropolymerized onto a gold electrode 

using the parameters established above for HMEDOT.  
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2. Introduction  

 The long-term purpose of this project deals with biofuel cells, which have 

the ability to convert chemical energy to electrical energy. Specifically, the goal is 

to develop a more efficient biofuel cell with the use of mediators and modification 

of electrode surfaces. This project focuses on the characterization of a mediator 

in relation to electron shuttling within the galvanic cell. The mediator is expected 

to assist the transfer of electrons between the electrode surface and the enzyme, 

resulting in a more efficient cell.  

 Electropolymerization is a chemical reaction influenced by a potential or 

an electric current to produce polymers from monomers on an electrode surface. 

The electrodes used throughout this experiment are gold because of their 

chemical stability and biocompatibility.1 Individually addressable gold 

microelectrodes photolithographically patterned on silicon chips were available in 

the laboratory for electropolymerization studies. These particular chips are 

advantageous because each electrode can be electropolymerized separately, 

under the same or different conditions. Multiple electrodes on one chip allow for 

replicates to be taken with relative ease. An example of the chip used is shown in 

Figure 1. The monomer used is HMEDOT (hydroxymethyl-3,4-

ethylenedioxythiophene), rather than the widely experimentally used EDOT (3,4-

ethylenedioxythiophene), because its polarity causes increased solubility under 

aqueous conditions.1 The structures of EDOT and HMEDOT shown in Figure 2. 

This increase in solubility introduces a polymer that could potentially be more 
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applicable to biomolecules. Additionally, the hydroxymethyl functional group can 

be conjugated to an enzyme or coupled to a mediator. 

 Enzymes in a biofuel cell catalytically oxidize fuels and reduce oxidizing 

agents via redox reactions. Most enzymes cannot exchange electrons directly 

with a solid electrode, so a mediator is required.2 Mediators assist in the shuttling 

of electrons from enzymes to the surface of the electrode at the anode, while 

helping to shuttle electrons from the electrode surface to the enzyme at the 

cathode. A mediator can diffuse to the catalytic site of the enzyme, due to its 

small character, and assist in the transfer of electrons. If enzymes are attached 

to the surfaces of an electrode, they can be concentrated there. If the mediator is 

also confined there, rather than freely diffusing throughout the cell, then the 

efficiency of the collection of electrons at the electrode from the enzyme-

catalyzed reaction can be much greater. The conducting polymer HMEDOT 

serves as the immobilizing agent (via covalent coupling, esterification, for 

example) for the mediator, a means to direct the immobilization to a specific 

location (via electropolymerization), and an extensive matrix of conductive 

pathways to transfer electrons with the electrode. A schematic of the electrode, 

mediator, conducting polymer, and enzyme is shown in Figure 3. 

 A good mediator should be a small molecule that can be relatively close to 

the active site of the enzyme, and has an oxidation-reduction potential that is 

similar to the redox potential of the enzyme so that electron transfer will proceed 

spontaneously. The redox potential of the mediator needs to be 50 mV more 

positive of that of the enzyme active site at the anode, and more negative of that 
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for an enzyme at the cathode.5 If the redox potential of the mediator is too similar 

to that of the enzyme, then the electron transfer will not be able to occur. 

Furthermore, if the potential of the mediator is too far from that of the enzyme 

active site (more than 100 mV), then the voltage of the cell will be impaired.2 

Ferrocene is the model mediator for this project, specifically ferroceneacetic acid 

(FcAA).3 Ferrocene is convenient for multiple reasons: several derivatives are 

commercially available, it is electrochemically reversible, and it can be 

synthetically modified to tune its redox potential.4 Ferroceneacetic acid (shown in 

Figure 4) was selected because the functional group can be used in a coupling 

reaction with HMEDOT. In addition, the carboxylic acid group is at least one 

carbon unit away, as to not interfere with the redox potential of ferrocene.  

 This project is aimed to obtain a more efficient enzymatic biofuel cell from 

the modification of the electrode surface and use of electrochemical mediators. 

Specific Aim 1: The optimization of electropolymerization conditions to obtain 

polymerized HMEDOT on the surface of a gold electrode. Specific Aim 2: The 

immobilization of the mediator by coupling ferroceneacetic acid (FcAA) to the 

monomer HMEDOT. Specific Aim 3: The immobilization of the mediator-

monomer product to a specific location on a gold electrode via 

electropolymerization, using the conditions optimized in Specific Aim 1.  
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2.1 Figures 
	
  

	
  
Figure 1.  A representative chip used for the electropolymerization studies. 
 

 

 

	
  
	
  
Figure 2. Schematic for EDOT (left) and HMEDOT (right).  
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Figure 3. Interaction of an electrode, an electron mediator (a ferrocene 

derivative), a conducting polymer (poly 3,4-ethylenedioxythiophene, PEDOT), 

and an enzyme (horse radish peroxidase (HRP)). Figure courtesy of Benjamin J. 

Jones. 

 

	
  
Figure 4. Schematic for ferroceneacetic acid (the mediator used in these 

studies). 
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3. Electropolymerization and Characterization of Conducting Polymer 

3.1 Introduction 

 Electropolymerization is a chemical reaction that turns monomers into 

polymers using electric current or potential (for this project, potential was applied 

to polymerize a monomer on the surface of an electrode). More specifically, the 

electrochemical oxidation of an aromatic heterocyclic molecule (for example, a 

thiophene group) typically leads to the formation of a conducting polymer on an 

electrode surface.1 EDOT (3,4-ethylene dioxythiophene) is a widely used 

monomer, but the hydroxymethyl derivative of EDOT (HMEDOT) is potentially 

more applicable to biomolecules due to its increased solubility under aqueous 

conditions.2 HMEDOT not only has improved ability to electropolymerize in water, 

but also has an increased level of electroactivity after polymerization in aqueous 

environments.3 In addition to its polarity, the hydroxymethyl functional group of 

HMEDOT can also be coupled to a mediator (for example, via esterification). 

While PEDOT (the polymer of EDOT) has been used in several experiments, its 

more polar derivative HMEDOT has been selected as the polymer due to the 

applications of the hydroxymethyl group.   

 Cyclic voltammetry (CV) is performed throughout these experiments to 

measure the current, as the voltage is swept through a potential range. The 

instrument used to sweep the potential, set in the parameters, is the potentiostat. 

During CV, the voltage of the working electrode is cycled (biased by the 

reference electrode), and the current measured. CV works through a potentiostat 

and a three-electrode electrochemical cell.4 The working electrode, typically 
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made of inert material (usually Au, Pt, or glassy carbon), is the electrode where 

the electrochemical reaction of interest occurs; the counter electrode, placed in a 

solution having ionic conductivity with the working electrode, is also 

characteristically made of inert material (usually Pt or graphite) and completes 

the electrochemical circuit (passes current to and from the working electrode).5 

The reference electrode simply defines the reference potential, without actually 

passing current. The counter electrode used throughout these experiments is a 

platinum flag, and the reference electrode is Ag/AgCl (in saturated KCl). The 

electrochemical solution contains the necessary ions for the redox reaction to 

proceed. The shape of a cyclic voltammogram helps identify specific 

electrochemical properties of the redox processes in an electrochemical cell.5   

 

3.2 Experiment 

3.2a Materials 

Hydroxymethyl-3,4-ethylenedioxythiophene (HMEDOT), and β-

cyclodextrin sulfated sodium salt (β-CDSS), obtained from Sigma US, were used 

in these experiments. Potentiostat models 650A and 760B from CH Instruments 

in Austin, TX were used to perform the electrochemical studies. For the platinum 

electrode experiments, a commercially available platinum macrodisk electrode 

from CHI was used as the working electrode. For the gold electrode experiments, 

the chips had gold working electrodes (0.02 cm2, 0.04 cm2, and 0.06 cm2) 

insulated with benzocylcobutene (BCB). These gold-electrode chips were plasma 

cleaned and stored in ultrapure 18.2 MΩ*cm water within 72 h before use. A 
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platinum flag counter electrode was used along with a Ag/AgCl (in saturated KCl) 

reference electrode.  

 

3.2b Electropolymerization of EDOT and HMEDOT on a Platinum Electrode 

Electropolymerization was first tested on a platinum macrodisk electrode, 

with a platinum flag counter electrode and a Ag/AgCl (in saturated KCl) reference 

electrode. The Pt electrode was first polished before use. To polish the electrode, 

a standard polishing technique was used with 1 µm diamond and 0.5 µm alumina 

polishing solutions, sonicating in between solutions with ethanol and water. After 

polishing, electropolymerization of the monomer was completed on the platinum 

electrode. The polymerization procedure was done for both the EDOT monomer 

and the HMEDOT monomer.  

The electropolymerization of EDOT was first tested to ensure that the 

polymerization procedure and conditions were possible and repeatable. A 

solution of 0.01 M PBS, 0.001 M β-CDSS, 0.01 M EDOT was used for the 

polymerization of EDOT. The solution was sonicated for 1 hour. The Pt electrode, 

Pt flag counter electrode, and Ag/AgCl (in saturated KCl) reference electrode 

were placed in the solution and connected to the potentiostat via alligator clips. 

The parameters were set at a scan rate of 0.005 V/s from -0.455 V to 1.25 V. The 

electrode was then characterized in 0.1 M KCl from 0.0 V to 0.4 V at a scan rate 

of 0.05 V/s. 

For the electropolymerization of HMEDOT, a solution of 0.1 M HMEDOT, 

0.001 M β-CDSS, and 0.01 M PBS (phosphate buffered saline) was used. The 
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HMEDOT solution was sonicated for one hour. The working, counter, and 

reference electrode were then placed in the solution and connected to the 

potentiostat. Parameters were set at a scan rate of 0.005 V/s from -0.455 V to 

1.25 V. After polymerization, the electrode was characterized in 0.1 M KCl from 

0.0 V 0.4 V at a scan rate of 0.05 V/s. 

 Because of the relative inefficiency, the one platinum macrodisk electrode 

was replaced with a multiple-electrode gold chip for further experimentation.  

 

3.2c Electropolymeization of HMEDOT on a Gold Electrode 

Gold electrodes are used due to their chemical stability and 

biocompatibility.2 Specifically, individually addressable gold microelectrodes 

patterned on a chip photolithography patterned on a Si wafer with a top insulating 

SiO2 layer, which are available in the laboratory, are used because each 

electrode can be electropolymerized separately. This permits a more efficient, 

repeatable process by allowing electropolymerization to take place under the 

same or different conditions on one chip, rather than multiple chips. 

 A multi-electrode gold chip was used to electrodeposit HMEDOT on the 

surface of each electrode. Before the chip could be used for experiments, it had 

to be plasma cleaned to remove any organic impurities on its surface. Such 

organic impurities on the electrode surface could affect the ability of the polymer 

to stick. During the plasma cleaning process, the pressure is kept very low 

(around 0.001 atm), and oxygen is slowly entered into the system – oxygen 

plasma forms through the ionization of the low-pressure oxygen. A chemical 
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reaction occurs to clean off the surface of the electrode, which involves breaking 

organic bonds, and the subsequent reaction of oxygen species in the plasma to 

form compounds that are evaporated from the chamber during the cleaning 

process, resulting in a clean electrode. 

 

 Optimization of Polymerization Conditions for HMEDOT 

For optimization of polymerization conditions on a gold electrode, four 

different solutions were used to electropolymerize the monomer on separate 

electrodes on the same chip. Solution 1 contained 0.01 M PBS, 0.01 M 

HMEDOT, and 0.001 M β-CDSS; solution 2 contained 0.01 M PBS, 0.01 M 

HMEDOT, and 0.01 M β-CDSS; solution 3 contained 0.01 M HMEDOT, 0.001 M 

β-CDSS and ultrapure 18.2 MΩ*cm water; solution 4 contained 0.01 M 

HMEDOT, 0.01 M β-CDSS, and ultrapure 18.2 MΩ*cm water. These solutions 

are summarized in Table 1. After sonication of the polymerization solution for one 

hour, electropolymerization took place under the following parameters: start 

potential at 0.0 V, end potential at 1.12 V, scan rate at 0.005 V/s, sensitivity at 

1.0 x 10-5 A/V.  

Using the two solutions that produced dark films (a visual check of 

polymerization), each electrode on another separate chip was then polymerized 

to evaluate reproducibility.  

The scan rate was then optimized for polymerization. To test these scan 

rates, the scan rate parameter was simply changed for each subsequent 

experiment, with the other parameters (start potential, end potential, sensitivity) 
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held constant throughout. Scan rates of 0.005 V/s, 0.05 V/s, and 0.1 V/s were 

tested. Different start and end potentials were also tested, with the start varying 

from -0.5 to 0, and the end varying from 1.0 to 1.2.  

The electrode, following polymerization, was characterized in 0.1 M KCl at 

a scan rate of 0.1 V/s, start potential of 0.0 V, end potential of 1.2 V, and a 

sensitivity of 1 x 10-5 A/V. The charging current for each electrode before and 

after polymerization were then overlaid to get a quantitative indication of how 

much the capacitance has increased as a result of the deposited film.  

 

3.3 Results & Discussion 

3.3a Electropolymerization on Platinum Electrode 

 The electropolymerization of EDOT was first tested to ensure that the 

polymerization procedure and conditions were possible and repeatable. EDOT 

was polymerized on the Pt electrode, forming a dark blue film covering the 

electrode surface (Figure 3). The charging current noticeably increased, further 

showing that PEDOT (polymer of EDOT) was actually formed on the surface of 

the electrode (Figure 2). The oxidation of the thiophene ring occurred around 1.1 

V. A representative example of the polymerization of EDOT on Pt can be seen in 

Figure 1.  

The polymerization procedure used for EDOT was then applied to 

HMEDOT. The polymerization of HMEDOT on a platinum electrode to produce 

HMPEDOT (polymer of HMEDOT) resulted in a dark film of polymer and a slight 
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increase in charging current, but was relatively inefficient and inconsistent. A 

representative polymerization of HMEDOT on Pt is shown in Figure 4, and the 

characterization of the Pt electrode before and after polymerization is shown in 

Figure 5. A better option would be a chip containing multiple electrodes so 

replicates can be taken with ease. Luckily, chips (each with multiple gold 

electrodes) were readily available in the laboratory; as a result, further 

experimentation occurred using the more efficient multi-electrode gold chip.  

 

3.3b Electropolymerization on Gold Electrode 

 The polymerization conditions were performed in replicates (multiple 

electrodes on six separate chips), each yielding similar visual results, with a dark 

blue film appearing on the surface of the electrode (Figures 9 and 10). Different 

scan rates were tested for optimization of the scan rate parameters, and it was 

found that the slowest scan rate yielded the most consistent visual results, with a 

dark blue film on the surface of the electrode. The overlay of the CVs before and 

after polymerization shows a clear increase in charging current, which is 

expected for a polymer deposited on the surface of the electrode because of the 

increase in surface area. The capacitance also increased approximately 100 

times after polymerization (shown in Table 2), expected with an electrodeposited 

conducting polymer on the surface. Both the current and capacitance should 

theoretically increase when adding a conducting polymer to the electrode 

surface, and this was found to be experimentally true for the polymer of 

HMEDOT. The smaller electrodes (0.02 cm2) were deemed to be unfit for 
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consistent polymerizations due to the large standard deviation of capacitance 

values (shown in Table 2); as a result, such electrodes were avoided in 

subsequent experiments. 

 In the electropolymerization solution, HMEDOT was used as the 

monomer, and β-CDSS was used as the solubilizer, while also serving as the 

electrolyte (from the sulfated sodium) in the absence of PBS. It was found that 

solutions 3 and 4 produced consistently dark films, while solutions 1 and 2 did 

not. Thus, the solutions with water rather than PBS were used for further 

experimentation. Those two solutions were polymerized on individual electrodes 

in replicate on separate chips. A dark film covered the surface on both, and both 

had an oxidation of the thiophene ring at about 0.9 V. The polymerization of 

solution 3 (0.01 M HMEDOT, 0.001 M β-CDSS and ultrapure 18.2 MΩ water) is 

shown in Figure 6, and the polymerization of solution 4 (0.01 M HMEDOT, 0.01 

M β-CDSS and ultrapure 18.2 MΩ water) is shown in Figure 7. The 

polymerization results obtained from these two solutions were quite similar, both 

having dark films and oxidation around 1 V; as a result, the solution using 0.001 

M β-CDSS rather than 0.01 M β-CDSS is ideal. Figure 8 shows a representative 

example of the overlay of before and after electropolymerization of this solution, 

showing that the deposition of polymer on the surface of the electrode causes an 

increase in charging current. The electrode before and after polymerization can 

be seen in Figure 9, with the dark polymer noticeably deposited on the surface of 

the electrode. Different scan rates were tested to see if it was actually necessary 

to have the solution polymerize at 0.005 V/s or if it could be done faster. It was 
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found that the faster scan rates (0.1 V/s and 0.05 V/s) were not effective at 

producing polymer, so a scan rate of 5 mV per second is the scan rate that 

produces a repeatable, dark film of polymer on the electrode surface. 

Additionally, the optimal voltage was found to go from 0.0 V to 1.2 V, noting that 

the end voltage of 1.12 V produced similar results as the end voltage of 1.2 V. 

Thus, the solution composed of 0.01 M HMEDOT, 0.001 M β-CDSS and 

ultrapure 18.2 MΩ*cm water is optimally polymerized from 0.0 V to 1.2 V at a 

scan rate of 0.005 V/s to obtain a consistent, even film of polymer. 

 

3.4 Figures 

3.4a Electropolymerization on Platinum Electrode  

 

Figure 1. The polymerization of an EDOT solution (0.01 M PBS, 0.001 M β-

CDSS, and 0.01 M EDOT) from -0.455 V to 1.25 V at a scan rate of 0.005 V/s on 

a platinum electrode. 



	
   20	
  

 

 

Figure 2. The characterization of a platinum electrode in 0.1 M KCl before (blue) 

and after (red) polymerization of an EDOT solution (.01 M PBS, 0.001 M β-

CDSS, and 0.01 M EDOT) from 0.0 to 0.4 V at a scan rate of 0.05 V/s. 

 

 

Figure 3. The platinum electrode before and after polymerization of EDOT. The 

red arrow points to the electrode surface. 
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Figure 4. The polymerization of an HMEDOT solution (0.1 M HMEDOT, 0.001 M 

β-CDSS, and 0.01 M PBS) on a Pt electrode from -0.455 V to 1.25 V at a scan 

rate of 0.005 V/s. 
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Figure 5: Characterization of Pt electrode in 0.1M KCl before (blue) and after 

(red) polymerization of HMEDOT solution (0.1 M HMEDOT, 0.001 M β-CDSS, 

and 0.01 M PBS) from 0.0 – 0.4 V at a scan rate of 0.05 V/s. 

 

3.4b Electropolymerization on Gold Electrode  

	
  
Table 1. Electropolymerization solution compositions. The β-CDSS acts as the 

electrolyte in addition to the solubilizer in the solution made up of ultrapure 18.2 

MΩ*cm H2O. 

	
  
Solution Monomer Solubilizer Electrolyte  
1 0.01 M HMEDOT 0.001 M β-CDSS 0.01 M PBS 
2 0.01 M HMEDOT 0.01 M β-CDSS 0.01 M PBS 
3 0.01 M HMEDOT 0.001 M β-CDSS No added 

electrolyte 
4 0.01 M HMEDOT 0.01 M β-CDSS No added 

electrolyte 
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Figure 6. An example CV response of electropolymerization from an HMEDOT 

solution (containing 0.01 M HMEDOT, 0.001 M β-CDSS, and ultrapure 18.2 MΩ 

water) from 0.0 V to 1.12 V at a scan rate of 0.005 V/s on a 0.04 cm2 gold 

electrode. 
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Figure 7. An example CV response electropolymerization from an HMEDOT 

solution (containing 0.01 M HMEDOT, 0.01 M β-CDSS, and ultrapure 18.2 MΩ 

water) from 0.0 V to 1.12 V at a scan rate of 0.005 V/s on a 0.06 cm2 gold 

electrode. 
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Figure 8. A representative CV response for characterization of a gold electrode in 

0.1 M KCl before and after polymerization of a solution of HMEDOT (0.01 M 

HMEDOT, 0.01 M β-CDSS, and ultrapure 18.2 MΩ water) from 0.0 V to 0.5 V at 

a scan rate of 0.1 V/s. 
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Figure 9. The gold electrodes (on chip type 1) before and after 

electropolymerization of HMEDOT. The red boxes highlight the electrodes that 

were polymerized (electrodes 1, 5, and 6). 

 

 

Figure 10: The gold electrodes (on chip type 2) after electropolymerization of 

HMEDOT. The letters A – F correspond to the electrodes that were polymerized.  
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Table 2: Characterization of Au electrode before and after polymerization of 

HMEDOT in 0.1 M KCl. See Figure 10 for the specific electrodes (on chip type 2) 

corresponding to each letter. The ± refers to the standard deviation of each 

electrode, where the number of replicates N = 5.  

Electrode Area (cm2) Current 
Density 
(µA/cm2) 
Before 

Current 
Density 
(µA/cm2) 
After 

Capacitance 
(µF/cm2) 
Before 

Capacitance 
(µF/cm2) After  

A 0.06 11.0 ± 1.60 1100 ± 26 110.3 ± 16 10960 ± 260 

B 0.04 9.89 ± 2.3 1080 ± 78 98.9 ± 23 10790 ± 780 

C 0.02 7.65 ± 2.2 747 ± 220 76.5 ± 22 7469 ± 2200 

D 0.02 7.91 ± 2.4 555 ± 260  79.1 ± 24 5552 ± 2600 

E 0.04 9.85 ± 3.3 1120 ± 25 98.5 ± 33 10940 ± 250 

F 0.06 11.1 ± 4.3 1090 ± 63 111.0 ± 43 10880 ± 630  
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4. Characterization and Immobilization of Electrochemical Mediator  

4.1 Introduction 

Electropolymerization, a chemical reaction influenced by electric current or 

potential to produce polymers from monomers, can be used to immobilize a small 

molecule (a mediator) to an electrode surface. In this project, the potential is 

controlled to induce the polymerization. With the mediator immobilized to the 

electrode surface (for instance, via coupling to a monomer and subsequent 

electropolymerization), it can then that can assist in transferring electrons to or 

from enzymes. A representation of the role the mediator may play in a biofuel cell 

is shown in Figure 4. This strategy is one approach toward making an electrode 

for a more efficient biofuel cell.  

Enzymes in a biofuel cell work through redox reactions to catalytically 

oxidize fuels and reduce oxidants. Most enzymes cannot exchange electrons 

directly with a solid electrode; thus, a small molecule (a mediator) is required.1 

The mediator helps to shuttle electrons from the redox site within the enzyme to 

the surface of the electrode at the anode, while it helps to shuttle electrons from 

the electrode surface to the enzyme at the cathode. The mediator’s small 

character allows diffusion to the catalytic site of the enzyme and assistance in the 

transfer of electrons. The ease of diffusion by mediators could pose a potential 

problem concerning its ability to escape from the electrode without exchanging 

electrons. If the enzymes are attached to the surfaces of the electrodes, they can 

be concentrated there.  If the mediator is also confined to that area, then the 

mediator can more efficiently transfer electrons; as compared to a mediator freely 
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diffusing throughout the cell, since the loss of electrons to other reactions could 

occur. The conducting polymer (HMPEDOT) will serve as an immobilizing agent 

(via covalent coupling) for the mediator, a means to direct the immobilization to a 

specific location (via electropolymerization), and a source of conductive 

pathways to transfer electrons with the electrode. 

A good mediator should be a small molecule that can be relatively close to 

the active site of the enzyme and has an oxidation-reduction potential similar to 

the redox potential of the enzyme so that the electron transfer process can be 

completed spontaneously. Specifically, the mediator should have a redox 

potential about 50 mV more negative of that of the enzyme.1 The mediator must 

be able to quickly cycle between the oxidized and reduced states, and be stable 

enough in those states to effectively continue mediation.2 The model mediator 

used in this project is a ferrocene derivative.3 Ferrocene is convenient for a few 

reasons: several derivatives are commercially available, it’s electrochemically 

reversible, and it can be synthetically modified to tune its redox potential.4 

Ferroceneacetic acid (Figure 3) has been chosen because of the carboxylic acid 

functional group, which allows for conjugation (for example, via esterification). 

Additionally, this particular derivative was chosen since the carboxylic acid group 

needs to be at least one carbon-unit away so that it does not interfere with the 

redox potential of ferrocene.  
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4.2 Experiment 

4.2a Materials 

Hydroxymethyl-3,4-ethylenedioxythiophene (HMEDOT), ferroceneacetic 

acid (FcAA), dichloromethane, tetrabutylammonium hexafluorophosphate, 

magnesium sulfate (MgSO4), para-toluenesulfonic acid monohydrate (APTS) and 

β-cyclodextrin sulfated sodium (β-CDSS) were obtained from Sigma US. For the 

gold electrode experiments, the chips had gold electrodes insulated with 

benzocylcobutene (BCB). These fabricated gold-electrode chips were plasma 

cleaned and stored in ultrapure 18.2 MΩ*cm water within 72 h before use.  

 

4.2b Electrochemistry with FcAA 

 Electrochemistry was performed, using potentiostat models 650A and 

760B from CH Instruments in Austin, TX, on ferroceneacetic acid (FcAA) alone, 

FcAA on HMEDOT film, and FcAA on PEDOT film. Cyclic voltammetry (CV) was 

performed using a three-electrode system with a Ag/AgCl (in sat’d KCl) reference 

electrode, platinum flag counter electrode, and gold working electrode. 1 mM 

FcAA (in PBS) was first characterized from 0.0 – 0.4 V at a scan rate of 0.1 V/s 

on a clean gold electrode. HMEDOT was polymerized on a clean gold electrode, 

as outlined previously in section 3.2c.1 mM FcAA was then characterized from 

0.0 V – 0.6 V at a scan rate of 0.1 V/s on a gold electrode newly polymerized with 

HMEDOT. Subsequently, 1 mM FcAA was characterized from -0.1 – 0.4 V at a 

scan rate of 0.1 V/s on a gold electrode newly polymerized with EDOT.   
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4.2c Synthesis of FcA-MEDOT 

 The reaction for the synthesis of FcA-MEDOT (ferroceneacetic-

methylEDOT) is shown in Figure 5. Approximately 43.9 mg of FcAA (0.18 mmol) 

was placed in a 100 mL three-neck round bottom flask (RBF) along with 

approximately 31 mg HMEDOT and 3.8 mg APTS. The RBF was attached to a 

N2 line and flushed with N2. A drying column was made by filling a 50 mL buret 

with approximately 6 cm of Al2O3. Approximately 20 mL of toluene was poured 

into the drying column, and 10 mL collected in the RBF. The RBF was attached 

to the N2 line, plugged, and allowed to stir for 8 h at room temperature.  

 5 mL of DI H2O was added to the RBF, swirled and the contents 

transferred to a 125-250 mL separatory funnel. About 2.5 mL diethyl ether was 

added to the separatory funnel. The separatory funnel was stoppered and then 

inverted, The stopcock was then opened to release pressure. The stopcock was 

closed, and the separatory funnel inverted 4-5 times. The stopcock was again 

opened to release pressure. The inversion and release process was repeated 4-

5 times to ensure complete mixing. The separatory funnel was set onto ring and 

the phases allowed to separate completely. The aqueous phase, on bottom, was 

drawn out through the stopcock into a 20 mL vial. The organic phase was then 

washed with once with 5 mL water using the same inversion procedure. The 

aqueous phase was removed through the stopcock; the organic phase was 

poured out of the top of the separatory funnel into a clean 20 mL vial. 

Approximately 20 mg MgSO4 was slowly added to the vial, swirling until the 

clumping ceases, and let sit for 30-60 seconds. The MgSO4 was removed from 
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the vial using a pipet with glass wool. The solvent was slowly poured into the 

filter, leaving the majority of the MgSO4 in the vial. MgSO4 (approximately 10 mg) 

was again added to the filtered solvent, and let sit for 10 minutes. The solvent 

was filtered through glass wool, and collected.  

 The solvent was evaporated from the RBF using a rotovap (rotary 

evaporator). The product was subsequently purified by column chromatography. 

The column was prepared with a Pasteur pipet, glass wool, and silica gel. The 

column was then flushed with dichloromethane: solvent flowed down the silica 

gel, never letting the column dry out. The sample was then loaded onto the silica 

gel column, and the column eluted by flash chromatography. Fractions were 

taken approximately every milliliter until the color of the column ceases to change 

(after 28 fractions).  

 

4.2d Determination of Product 

 Each fraction was then analyzed using thin-layer chromatography (TLC): 2 

µL of each fraction was placed on a pencil-marked line (at about 0.5 cm from the 

bottom) of the TLC plate, the plate was placed in a jar of dichloromethane 

(solvent below the line), the plate was taken out when the solvent level reached 

the top of the plate (at about 0.5 cm from the top), and the solvent line marked 

with pencil. Each plate was placed under UV light, and the spots circled with 

pencil. The distance the solvent and compound traveled, and the Rf values 

calculated (Rf = distance traveled by sample/distance traveled by solvent). The 
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fraction with the largest Rf value (most hydrophobic fraction) was then tested with 

electrochemistry for further analysis.  

 Electrochemistry was performed on the product using a Ag/AgCl (in 

saturated KCl) reference electrode, a platinum flag counter electrode, and a gold 

working electrode. The product was dissolved in a solution of 0.1 M 

tetrabutylammonium hexafluorophosphate in dichloromethane. The electrodes 

were placed in the solution, and cyclic voltammograms taken from 0.0 – 0.4 V at 

a scan rate of 0.1 V/s on a clean gold electrode. The results were then compared 

to the CV of the 1 mM FcAA control performed using the same reference and 

counter electrodes at the same parameters, with the same type of 0.06 cm2 gold 

working electrode. 

 

4.3 Results and Discussion 

4.3a Electrochemistry with FcAA 

 The electrochemistry performed with FcAA provided results that could be 

used as a comparison point for further experimentation. The CV response of 1 

mM FcAA on a gold electrode (shown in Figure 1) gave an E1/2 (half reduction 

potential) of 0.155 V, and a ΔEp (change in peak potential) of 0.061 V. Likewise, 

the CV response of 1 mM FcAA on a gold electrode polymerized with an 

HMPEDOT film (shown in Figure 2) gave an E1/2 of 0.154 V, and a ΔEp of 0.067 

V in addition to the typical rectangular shape, consistent with that of the polymer. 

The E1/2 values as well as the ΔEp values for FcAA on gold and FcAA on 

HMPEDOT film on gold are consistent. This shows that the redox properties of 
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FcAA are consistent whether on the electrode surface or on the conducting 

polymer (on an electrode surface). Thus, FcAA should be able to transfer 

electrons through a conducting polymer with similar properties to that through an 

electrode surface. Additionally, the change in peak potential for that of FcAA and 

that of FcAA on an HMPEDOT-modified electrode are similar, specifically 6 mV 

apart. Thus, the reversibility of FcAA’s redox process is similar with and without a 

conducting polymer.   

 

4.3b Synthesis of FcA-MEDOT 

 A schematic of the reaction of FcAA with HMEDOT to form FcA-MEDOT 

(ferroceneacetic-methylEDOT) is shown in Figure 5. After evaporation of solvent 

off the product, a golden substance was left in the RBF. During the column 

chromatography, the initial color was very dark brown (almost black), but 

proceeded to separate into three main colors: brown/black, yellow, and orange. 

The orange band progressively moved down the column, eventually leaving only 

brown/black and yellow bands on the column.  

 

4.3c Determination of Product 

 TLC was performed on each of the fractions obtained from column 

chromatography, and the Rf values subsequently calculated. Dichloromethane (a 

nonpolar substance) was used as the solvent for the mobile phase. The product 

expected (FcA-MEDOT) is a relatively nonpolar substance. Thus, the product 
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should have a higher affinity for the solvent than for the plate, meaning that the 

product will move down the plate and have a higher Rf value. The fraction with 

the highest Rf value most likely contains the desired product. The Rf values 

obtained from TLC are shown in Table 1 and Table 2. 

 The fraction with the largest Rf value (shown in Table 2) would be the 

most hydrophobic molecule, which is consistent with the desired product. The 

FcAA and HMEDOT would both have a greater affinity for the column than the 

FcA-MEDOT. The fraction with the highest Rf value was tested with 

electrochemistry to determine if the FcAA could be detected: there should be a 

shift in the redox potential of the FcAA upon coupling. FcAA and its 

electrochemical signal would not be present in the film on the electrode if it did 

not couple to HMEDOT.  There was no oxidation or reduction peak detected for 

the fraction tested. It seems as though the coupling of FcAA to HMEDOT was not 

entirely successful even though TLC showed a more hydrophobic molecule 

(compared to FcAA or HMEDOT alone) that is consistent with FcA-MEDOT. It is 

also possible that side reactions of the product occurred. The electrochemical 

analysis of the product did not take place immediately after the synthesis 

process. Additionally, the fraction was dissolved in several different solutions 

(evaporating one before dissolving the next) to test the solubility of the product in 

different solvents. The prolonged exposure to air could have an effect on the 

FcAA moiety of the product, possibly resulting in a loss of redox activity. The 

prolonged exposure to light could have had similar effects.  
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4.4 Figures 

 

Figure 1. 1 mM FcAA (in 0.1 M PBS) from 0.0 – 0.4 V at a scan rate of 0.1 V/s. 

 

 

Figure 2. CV response of an HMPEDOT-modified electrode in a solution 

containing 1 mM FcAA (in 0.1 M PBS) from 0.0 – 0.6 V at a scan rate of 0.1 V/s. 
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Figure 3. Schematic for ferroceneacetic acid (the mediator used in these 

studies). 

 

 

Figure 4. Interaction of an electrode, an electron mediator (a ferrocene 

derivative), a conducting polymer (poly 3,4-ethylenedioxythiophene, PEDOT), 

and an enzyme (horse radish peroxidase (HRP)). This interaction shows the role 

that FcAA might play in a biofuel cell. Figure courtesy of Benjamin J. Jones.  
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Figure 5. The esterification reaction of FcAA with HMEDOT to form FcA-MEDOT.  

 

 

Table 1. Rf values from thin-layer chromatography (TLC) for the first five fractions 

and the starting materials (FcAA and HMEDOT). 

Starting 
Materials 

FcAA HMEDOT Fraction 1 2 3 4 5 

Rf  
Values 

- - Rf 
Values 

- - 0.847 0.102 0.197 
0.0667 - - - - 0.0847 - 
0.0370 0.0250 - - - 0.0508 0.0492 

 

 

Table 2: Rf values from TLC for fractions 6-12 and the starting materials (FcAA 

and HMEDOT). 

Starting 
Materials 

FcAA HMEDOT Fraction 6 7 8 9 10 11 12 

Rf  
Values 

- - Rf 
Values 

- - - - - - - 
0.0667 - - - - - - 0.0667 0.0667 
0.0370 0.0250 - - - 0.0583 - 0.0333 0.0333 
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5. Conclusion 
	
  

The ultimate purpose of this project is to create a more efficient biofuel cell 

with the use of mediators and modified electrodes. The mediator transfers 

electrons between the electrode surface and the enzyme, producing a more 

efficient complex. With a mediator confined to a specific area on the surface of 

the electrode, the electron transfer process is much more effective than it would 

be if the mediator were freely diffusing throughout the cell. HMPEDOT, the 

conducting polymer, serves as the immobilizing agent for the mediator (via 

covalent coupling), as a means to direct the immobilization to a specific location 

(via electropolymerization), and as the matrix of conductive pathways in which 

electrons are transferred with the electrode.  

 In this project, the electropolymerization of HMEDOT was optimized, and 

attempts made to covalently couple FcAA to HMEDOT. The optimal solution 

composition and polymerization conditions for HMEDOT was found to be 0.01 M 

HMEDOT, 0.001 M β-CDSS, and ultrapure 18.2 MΩ*cm water at a scan rate of 

0.005 V/s from 0.0 V to 1.2 V to consistently obtain a film of polymer. The chosen 

mediator, ferroceneacetic acid (FcAA), was coupled to HMEDOT via 

esterification. The product was analyzed using TLC and electrochemistry.  

Future work needs to be done to optimize the coupling procedure and verify the 

synthesis product. It is possible that the percent yield is so low that the product 

cannot be detected, especially considering that the synthesis on such a small 

scale. Increasing the scale of synthesis could help alleviate this issue. Once 
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synthesized and purified in large enough quantities, FcA-MEDOT can then be 

electropolymerized using the conditions optimized for HMEDOT. Once the FcA-

MEDOT electropolymerization conditions and parameter have been set, the 

immobilized mediator can be tested with an immobilized enzyme. This could take 

a variety of forms. For example, the FcA-MEDOT could possibly be co-

polymerized with an enzyme-HMEDOT product. Another strategy would be to 

layer thin films of FcA-MEDOT, enzyme-HMEDOT, FcA-MEDOT, enzyme-

HMEDOT, etc. on the electrode.  
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