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Abstract. Gyrokinetic theory and simulations on ion heat transport physics in helical systems have recently been
developed. Damping processes of zonal flows driven by ion temperature gradient (ITG) turbulence in helical sys-
tems have been analytically investigated based on the gyrokinetic theory as a generalization of the previous work
by Rosenbluth and Hinton for tokamaks. A collisionless response function of the zonal flow to given source terms
is derived by taking account of the helical geometry and finite-orbit-width effects. Validity of the analytical pre-
dictions are verified by the Eulerian gyrokinetic code (GKV code) with very-high resolution of the phase space.
The GKV simulation extended to take account of helical-ripple-trapped particles is also applied to the ITG turbu-
lence in helical systems. The ITG turbulent transport level in a model case for the inward-shifted magnetic-axis
configuration with a stronger instability drive is effectively suppressed by the zonal flow, and is reduced to a level
comparable to that in the less unstable case for the standard configuration with smaller side-band helical field
components.

1. Introduction

Gyrokinetic theory and simulation of plasma turbulence have advanced physical understand-
ings on the anomalous transport mechanism in magnetic confinement fusion. The ion temper-
ature gradient (ITG) turbulence [1] and the zonal flows [2] have been intensively investigated
because of their importance in considering the anomalous ion heat transport. Detailed studies
on the zonal flow dynamics as well as their interactions with the ITG turbulence deepen under-
standings of the plasma transport mechanism. Among them, Rosenbluth and Hinton [3] have
developed the theory on the zonal flow driven by the ITG turbulence in tokamaks, and have
shown that in collisionless processes a zonal flow with finite amplitude remains constant after
Landau damping of the geodesic acoustic mode (GAM) oscillations [4]. It is demonstrated by
the gyrokinetic-Vlasov (GKV) simulation [5] that the damping process of the zonal flow and
GAM is closely related to fine oscillatory velocity-space structures of the perturbed ion gyro-
center distribution function,δ f . Also, a coherent structure ofδ f associated with the residual
zonal flow is clearly identified in the GKV simulation.

The gyrokinetic theory on the zonal flow and GAM driven by the ITG turbulence is recently
extended to helical systems by Sugama and Watanabe [6, 7] as a generalization of the work by
Rosenbluth and Hinton for tokamaks. It turns out that helical ripples in the equilibrium field
cause stronger damping of GAM than the toroidal magnetic variation does, and that drift mo-
tions of toroidally- and helically-trapped particles play a crucial role in determining the residual
zonal flow amplitude. Analytical predictions about geometrical effects on GAM dispersion re-
lation, the residual zonal flows, and the velocity-space structure of the distribution function are
also verified by GKV simulations with very-high resolution of the phase space.

The gyrokinetic-Vlasov simulation by means of the GKV code has confirmed the statisti-
cally steady state of the tokamak ITG turbulent transport in terms of detailed calculation of the
entropy balance [5, 8, 9] where fine velocity-space structures ofδ f generated in the turbulence
are resolved accurately. The GKV code is also applied to a full toroidal angle simulation of
the tokamak ITG turbulence by utilizing the Earth Simulator [10]. In order to elucidate how
the helical geometry can be optimized to enhance the residual zonal flow level and accordingly
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reduce the anomalous transport, the GKV simulation is extended to take account of helically-
trapped particles, and is applied to the ITG turbulence in helical systems, which is realized by
the tera-flops and tera-bytes scale computation on the Earth Simulator.

This paper is organized as follows. The theoretical and numerical models for the ITG turbu-
lence and the zonal flow are described in the next section. Recent progress in our studies on the
zonal flow and GAM is reported in section 3. In section 4, shown are results of the nonlinear
GKV simulation for the ITG turbulent transport in helical systems. A summary is given in the
last section.

2. Theoretical and Numerical Models
Let us consider the nonlinear gyrokinetic equation [11] for the perturbed ion distribution

function,δ f , in the low-β electrostatic limit. With the assumption of a large-aspect-ratio torus,
the governing equation forδ f is represented as

∂δ f
∂ t

+v‖bbb·∇δ f +
c

B0
{Φ,δ f}+vvvd ·∇δ f −µ (bbb·∇Ωi)

∂δ f
∂v‖

=
(
vvv∗−vvvd−v‖bbb

) · e∇Φ
Ti

FM +C(δ f )
(1)

where the parallel velocity,v‖, and the magnetic moment,µ, are chosen as the velocity-space
coordinates. The Maxwellian distribution is denoted byFM. We have employed the collision
term,C(δ f ), where the Lenard-Bernstein model collision operator is introduced, such that,
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whereνii denotes the ion-ion collision frequency. See Ref. [5] for more details, while standard
notations are used in Eq.(1).

In the GKV code, we employ the toroidal flux tube model [12] with the field-aligned coor-
dinates ofx = r− r0, y = r0

q0
[q(r)θ −ζ ], andz= θ , and also assume constant volume-averaged

density and temperature gradients with scale-lengths ofLn andLT as well as the constant mag-
netic shear parameter, ˆs. The averaged minor radius,r0, is defined byΨt = πB0r2

0 whereΨt

means the toroidal flux. Here,q(r) stands for the safety factor, andq0 = q(r0). The toroidal and
helical effects of the confinement field are introduced by the change of magnetic field strength,

B = B0

{
1− ε00(r)− εt(r)cosz−

l=L+1

∑
l=L−1

εl (r)cos[(l −Mq0)z−Mα]

}
, (3)

whereL andM denote the poloidal and toroidal periodicities of the helical field. For the Large
Helical Device (LHD),L = 2 andM = 10. The averaged normal curvature is introduced through
ε ′00 = dε00/dr [13]. The parameters representing the toroidicity and helicity are assumed to be
small such thatεt = r0/R0 ¿ 1 and|εl | ¿ 1, respectively, whereR0 means the major radius.
Major side band helical components are considered asεL−1 andεL+1. The absolute values of
εL−1 andεL+1 become large when the magnetic axis is shifted from the standard position by
changing the vertical field. We also set the field-line labelα to be constant (α = 0) because
the local analysis of the linear ITG instability in helical systems shows the weak dependence on
α [14].
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In Eq.(1), the magnetic and diamagnetic drift terms are given as
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Here,Ωi0 = eB0/mic, ηi = Ln/LT andv2 = v2
‖+2Ωiµ. The parallel derivative ofB,

bbb·∇B =
εtB0

q0R0

[
sinz+

l=L+1

∑
l=L−1

εl

εt
(l −Mq0)sin((l −Mq0)z−Mα)

]
, (6)

is employed for the mirror force term.
The modified periodic condition is adopted at the radial boundaries of the flux tube domain

[12]. Then, Φ is related to the electrostatic potential,φ , in the perpendicular wavenumber
space,(kx,ky), such thatΦkx,ky = J0(k⊥v⊥/Ωi)φkx,ky with k2

⊥ = (kx + ŝzky)2 +k2
y and the zeroth

order Bessel function,J0. The quasi-neutrality condition is used for calculation ofφkx,ky (see
Ref. [5] for more details). In the followings, we use the normalizations ofx/ρi → x, tvti/Ln→ t,
v/vti → v, B/B0 → B, eφLn/Tiρi → φ , andδ f Lnv3

ti/ρin0 → δ f , where the thermal gyroradius
is defined byρi = vti/Ωi0 for vti =

√
Ti/mi .

3. Gyrokinetic Theory and Simulation of Zonal Flows

Based on the gyrokinetic equation and the quasi-neutrality condition, we consider collision-
less dynamics of the ITG-mode-driven zonal flows. When the initial perturbed ion gyrocenter
distribution function takes the Maxwellian form, the response of the zonal-flow potential is
given by

φk⊥(t) = K (t)φk⊥(0), K (t) = KGAM(t)[1−KL(t)]+KL(t) (7)

whereK (t) represents the response function (or kernel). Here, the short-time responseKGAM(t)
is represented byKGAM(t) = cos(ωGt)exp(γt), whereωG and |γ| = −γ denote the real fre-
quency and the damping rate of GAM oscillations, respectively. Analytical expressions ofωG

andγ, which have been extended so as to take account of the finite-orbit-width (FOW) effects,
are found in Refs. [15] and [6, 7] for tokamaks and helical systems, respectively. Global drift
kinetic simulations of the GAM oscillation in helical systems are also done by Satake et al., and
are compared with the theoretical analysis [16]. The long-time response functionKL(t) gives
the normalized amplitude of the residual zonal flow in the limit oft → +∞. For tokamaks,
KL = 1/(1+1.6 q2/ε1/2). The time-dependentKL(t) for helical systems is given by

KL =
1− (2/π)〈(2εH)1/2{1−gi1(t,θ)}〉

1+G+E (t)/
(
n0〈k2

⊥a2
i 〉

) (8)

(see Ref. [6,7] for further details).
Analytical predictions about geometrical effects on the GAM dispersion relation, the resid-

ual zonal flows and the velocity-space structure of the distribution function in helical systems
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FIG. 1: (Left) Time-evolutions of the zonal-flow potential obtained by the GKV simulation for a helical
system (solid) and the long-time response kernel derived from the gyrokinetic theory (dashed). A single
helicity configuration withL = 2 andM = 10 is considered, such thatεh≡ εL = 0.1 andεL−1 = εL+1 = 0,
whereq0 = 1.5 andkxρi = 0.131. (Right) Velocity-space structure of the ion distribution function in the
velocity space during the collisionless damping of the zonal flow in a helical system withL = 2 and
M = 10at θ = 8π/13andt = 6.23(R0/vti).

are compared with the GKV simulation results. Results of the GKV simulations of the colli-
sionless zonal flow damping in helical systems are shown in Fig.1, where the initial potential
given by the Maxwellian distribution with the poloidal and toroidal mode numbers,m= n = 0,
is Landau-damped and then reaches a finite constant amplitude. The period numbers of the
helical field in the poloidal and toroidal directions areL = 2 andM = 10, respectively. We used
q0 = 1.5 andkxρi = 0.131. The dashed line in the left panel of Fig.1 indicates the theoretically-
obtained response kernelKL(t) describing the long-time behavior of the zonal flow potential.
The amplitude of the flux-surface-averaged potential,〈φk(t)〉, oscillating with the GAM fre-
quency, asymptotically approaches the residual level predicted by our theory. The GAM damp-
ing rate is enhanced by the FOW effect and the helical ripples, both of which produce lower
parallel phase velocity components of the GAM and accordingly a larger population of res-
onant ions than in the case of tokamaks with no orbit widths. Also, the frequency and the
damping rate of the GAM oscillations observed in the GKV simulations are in good agreement
with the GAM dispersion relation that is analytically derived from the short-time zonal-flow
response kernel [7].

The radial drift motions of particles trapped in helical ripples, which are related to neoclassi-
cal transport in the weak collisional regime, influence the long-time behavior of the zonal flow.
The right panel in Fig.1 shows a real part of the perturbed ion gyrocenter distribution function
δ fik/(eφk/Ti) (normalized) in the velocity space,(v‖,v⊥), obtained by the GKV simulation.
Structures ofδ fik with fine stripes along thev⊥-direction are caused by ballistic motions of
passing particles. A distinct hollow profile in the helical-ripple-trapped region colored by blue
is produced by the radial drift motion, and its averaged profile shows a remarkable agreement
with the analytical solution. Our theoretical analysis also suggests that a higher-level zonal-flow
response than in the tokamak case with the same aspect ratio can be maintained for a long time
by suppressing the radial drift velocity of the helical-ripple-trapped particles.

The analytically-derived distribution function associated with the zonal flow is also used to
construct a new gyrofluid closure model [17] (different from the Beer-Hammett model [18])
for zonal-flows driven by the tokamak ITG turbulence. The gyrokinetic theory and the gy-
rofluid closure model are recently extended to zonal flows in the electron temperature gradient
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FIG. 2: Profiles of the electrostatic potentialφ along the field line of the linear ITG mode (upper) and
the magnetic field strength (lower) for the case (A) with(εL−1,εL,εL+1) = εt(−0.2,1,−0) (left) and the
case (B) with(εL−1,εL,εL+1) = εt(−0.8,1,−0.2) (right). Real and imaginary parts ofφ obtained by
the GKV simulation for a helical system withL = 2 andM = 10 are, respectively, plotted by solid and
dashed lines in the upper panels wherekx = 0 andkyρi = 0.439.

turbulence [17], and shows a remarkable agreement with the GKV simulations.

4. Simulation of ITG Turbulence in Helical Systems

It is expected from the above results on the zonal-flow dynamics that optimization of the
three-dimensional magnetic configuration for reducing the neoclassical ripple transport can si-
multaneously enhance the residual zonal flows which lower the anomalous transport. In fact, it
is observed in the Large Helical Device that not only neoclassical but also anomalous transport
is reduced by the inward shift of the magnetic axis which decreases the radial ripple transport
while magnetic-curvature-driven instabilities such as the toroidal ITG mode are more unsta-
ble [22]. Also, zonal flows are observed in the Compact Helical System [23]. Thus, we are
encouraged to perform the GKV simulation of plasma turbulence in helical systems for further
investigation into regulation of the anomalous transport by the zonal flow.

For this purpose, we have first carried out the GKV simulation of the linear ITG instability
in helical systems. The eigenfunctions of the ITG mode in helical systems withL = 2, M = 10,
andεt = 0.1 are obtained by means of a linearized version of the GKV code, and are shown
in upper panels of Fig.2. The magnetic field strength|B| for the standard and inward-shifted
configurations is modeled by Eq.(6) with(εL−1,εL,εL+1) = εt(−0.2,1,0) and(εL−1,εL,εL+1) =
εt(−0.8,1,−0.2), respectively. Hereafter, we refer to the two different parameter sets as cases
(A) and (B), respectively. Profiles of|B| (normalized) along the field line are also plotted in
lower panels of Fig.2. Other parameters are summarized as follows;R0/Ln = 10/3, ε00 = 0,
R0ε ′00 = 0.25,α = 0, r0/ρi = 246,ŝ=−1,q0 = 1.5, ηi = 4,Te/Ti = 1, andνii = 2×10−3vti/Ln.
The linear growth rates of the mode withkx = 0 andkyρi = 0.439 areγ = 0.0883vti/Ln and
γ = 0.145vti/Ln for the cases (A) and (B), respectively. The ITG instability is driven stronger
in the case (A) than that in the case (B), while the nearly constant bottoms of|B| in the latter
case mean the lower radial drift of deeply trapped particles in helical ripples. The profiles of the
eigenfunctionφkkk(θ) are accompanied with oscillations associated with the helical ripples. The
linear eigenfunction ofφkkk has smaller ripples as the instability is driven stronger, and tends to
resemble the profile in the negative-shear tokamak case [24].

The nonlinear ITG turbulence simulation in helical systems are performed by utilizing the
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FIG. 3: Color contours of the perturbed electrostatic potentialφ obtained from the nonlinear GKV simu-
lation of the ITG turbulence in a helical system ofL = 2 andM = 10with (εL−1,εL,εL+1) = εt(−0.2,1,0).
The left and right panels are taken att = 35and100Ln/vti , respectively.

Earth Simulator [10]. The physical parameters are the same as those used in the linear ITG mode
simulations. The simulation box size in thex andy directions are determined so that∆q=−1/3
andNα = 6, where∆q andNα indicates a change in the safety factor across the radial width and
the toroidal periodicity, respectively. Thus, the minimum absolute values of the wavenumbers
are given bykx,minρi = 0.115 andky,minρi = 0.0366. In thez- (θ -) coordinates along field lines,
512 grid points are used so as to accurately simulate the particle motions in the helical field.
The simulation box in the velocity space is set to−5vti ≤ v‖ ≤ 5vti and 0≤ µ ≤ 12.5v2

ti/Ωi0,
and is discretized by 128×48 numerical grid points of in the (v‖, µ)-space. The high phase-
space resolution enables us to carry out the GKV simulation that accurately satisfies the entropy
balance. Even with|L−Mq0|= 13 helical ripples along the field line in a range of−π ≤ z≤ π,
the entropy balance is satisfied with relatively small errors. In the case (A), the normalized
error in the entropy balance is about 10% near the peak of the instability growth and decreases
to 2∼ 3% in the saturation phase, while it is degraded to 30% in the case (B) due to the stronger
instability.

Electrostatic potential perturbations obtained from the nonlinear GKV simulation for the
case (A) are shown in Fig.3 where the color contours ofφ at t = 35 and 100Ln/vti are mapped
on the innermost flux surface and an elliptic poloidal cross-section. One can see that ballooning
structures with radially elongated eddies found during the linear growth phase of the instability
(left panel of Fig.3) are destroyed by zonal flows. Then, the ITG turbulence is saturated after
t = 80Ln/vti (right panel). Time-averaged power spectrum of the potential perturbations in the
saturated turbulence peaks aroundkyρi ≈ 0.2 or 0.3 (not shown in figures).

Time-histories of the ion heat transport coefficient,χi/(ρ2
i vti/Ln), are plotted in the left

panel of Fig.4 for the cases (A) (solid) and (B) (dashed). After nonlinear oscillations during the
saturation process of the instability growth, the turbulent transport reaches a statistically steady
state. The transport coefficients averaged fromt = 80 to 150Ln/vti areχi ∼ 2.5ρ2

i vti/Ln and
χi ∼ 2.9ρ2

i vti/Ln in the cases (A) and (B), respectively. Since the ITG modes are more unstable
in the case (B) as shown in Fig.2 [where the growth rates are 60% (or more) larger than those in
case (A)], the peak value ofχi becomes about 40% larger than that in the case (A). Nevertheless,
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FIG. 4: Time-histories of the ion heat transport coefficient,χi , (left) and time-averaged spectrum of the
zonal flow potential,|φkx,0|, (right) in the ITG turbulence in a helical system ofL = 2 andM = 10 with
(εL−1,εL,εL+1) = εt(−0.2,1,−0) [case (A), solid] and(εL−1,εL,εL+1) = εt(−0.8,1,−0.2) [case (B),
dashed].

the time-averaged value ofχi aftert = 80 in the case (B) is only 16% higher than that in the case
(A), and the temporal values ofχi at t = 90Ln/vti are comparable between the two cases. The
effective transport suppression in the case (B) is attributed to the stronger zonal-flow generation
as shown in the right panel of Fig.4. The time-averaged spectrum of|φkx,0| in the case (B) has
about 1.5 times larger amplitude than that in the case (A), which is consistent with a fact that
the zonal flow response function has larger values in case (B).

In addition, typical radial scale lengths of the zonal flow potential observed in the helical
ITG simulations are shorter than those found in the tokamak ITG case for the Cyclone DIII-D
base case parameters [10]. Correspondingly, the zonal flow potential spectrum in thekx-space
has relatively smaller amplitude on the lowkx side. This tendency is expected from thekx-
dependence of the zonal flow response [6, 7]. Thus, the different zonal flow profiles found
in the cases (A) and (B), as well as the difference between helical and tokamak systems, are
correlated with their linear responses as predicted by the gyrokinetic theory [6,7].

5. Summary

The gyrokinetic theory and simulations are applied to investigation of the zonal flow and the
ITG turbulence in helical systems. The collisionless response of the zonal flow to given source
terms is analytically derived and its validity is verified by the Eulerian gyrokinetic simulation
code (GKV code) with very-high resolution of the phase space. The theoretical analysis predicts
that a higher-level zonal-flow can be maintained by reducing the radial drift velocity of the
helical-ripple-trapped ions. Then, the GKV code is extended for the nonlinear simulation of ITG
turbulence in the two different helical geometries corresponding to the standard and inward-
shifted configurations. In the latter case, the ITG mode is more unstable while the slower
radial drift velocity of the helical-ripple-trapped particles. The ITG turbulent transport found in
the GKV simulation for the inward-shifted configuration is more effectively suppressed by the
zonal flow, and is reduced to the level which is comparable to the standard configuration case
with linearly less unstable ITG modes.
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