
iSSN 8915-633X

NAT10NAL INSTITUTE FOR FUS10N SCIENCE

Non local Simu】atlon ofthe Formatlon ofNcoclassical Ambipolar
ElecMc Freld in Non―axlsymmctrlc Cottguratlons

S Sataに ,M Okamotoす N NakaJima H SuB4m4 4nd M Yo臨 yama

(R●oeived ―  oct 25 2005)

NIFS-827 Nov 2005

TOKI,」 APAN

CORE Metadata, citation and similar papers at core.ac.uk

Provided by National Institute for Fusion Science (NIFS-Repository)

https://core.ac.uk/display/72825081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

      
   
  Inquiries about copyright should be addressed to the Research Information Center,  

  National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan.  

  E-mail: bunken@nifs.ac.jp 

 
<Notice about photocopying> 
 In order to photocopy any work from this publication, you or your organization must obtain 
permission from the following organizaion which has been delegated for copyright for clearance by the 
copyright owner of this publication. 
 
Except in the USA 
 Japan Academic Association for Copyright Clearance (JAACC) 
 6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan 
 Phone: 81-3-3475-5618  FAX: 81-3-3475-5619  E-mail: jaacc@mtd.biglobe.ne.jp 
 
In the USA 
 Copyright Clearance Center, Inc. 
 222 Rosewood Drive, Danvers, MA 01923 USA 
 Phone: 1-978-750-8400   FAX: 1-978-646-8600 

 



Non-local Simulation of the Formation of Neoclassical Ambipolar

Electric Field in Non-axisymmetric Configurations

SATAKE Shinsuke, OKAMOTO Masao, NAKAJIMA Noriyoshi, SUGAMA Hideo, and

YOKOYAMA Masayuki

National Institute for Fusion Science, Toki, Japan

Abstract

Neoclassical transport simulation code (FORTEC-3D) applicable to non-axisymmetric

configurations is developed. Adoption of a new hybrid simulation model, in which ion trans-

port is solved by using the δf Monte-Carlo method including the finite-orbit-width effects

while electron transport is solved by a reduced ripple-averaged kinetic equation, makes it

possible to simulate the dynamism of non-local transport phenomena with self-consistently

developing radial electric field within a allowable computation time. Time evolution of radial

electric field in LHD plasma is simulated in the full volume of confinement region, and the

finite-orbit-width effect of neoclassical transport is found to make the negative ambipolar

electric field more larger than the prediction by a local transport theory.

keywords : neoclassical transport, ambipolar electric field, finite-orbit-width effect

1



1 Introduction

Neoclassical transport theory has been successfully established under the assumption of the local

transport model(small-orbit-width limit) and in a quasi-steady state. However, these assumptions

cannot be used to investigate those issues which have been attracting much interests recently,

such as the finite-orbit-width (FOW) effects when the typical orbit width in the radial direction is

comparable to the background gradient scale, the geodesic acoustic mode (GAM) of electric field

and its Landau damping mechanism[1], and the evolution of ambipolar radial electric field Er.

Though the net radial transport level observed in experiments is usually dominated by anomalous

transport, self-induced electric field profile can be explained by the neoclassical transport theory.

We have shown[2] by a Monte-Carlo simulation using the δf method[3, 4] that a steep Er profile

can be formed if there exists a steep density gradient in tokamak cases. Such a sheared Er

profile is considered to reduce both neoclassical transport level by the orbit-squeezing effect[5]

and microscopic turbulence by E × B shearing effect. In non-axisymmetric cases, steep shear

in Er profile can also be formed if the ambipolar condition has multiple solutions[6]. Since the

neoclassical fluxes in helical plasma strongly depend on Er, the determination of radial electric

field in the existence of multiple ambipolar roots is a key issue to evaluate transport level in helical

plasma.

The transition and bifurcation phenomena of Er in helical systems have usually been studied

by using analytic model for neoclassical transport[7, 8], for example in [6, 9]. These previous

studies have put a focus on relatively slow time scale phenomena, that is, the transport time

scale in which background profile of density and temperature change. We are interested in a

more short time scale phenomena comparable to transit time τtr ∼ qR/vth to ion collision time

τi where the background n and T profiles can be considered unchanged and in the non-local ef-

fects in neoclassical transport. However, the analytic model of neoclassical transport lacks these

physical mechanisms as follows: 1) GAM oscillation and polarization drift motion associated with

rapid time evolution of radial electric field, 2) non-local drift motion of transit particle orbits

in non-axisymmetric configuration and its contribution to neoclassical transport, 3) direct orbit

loss at the plasma boundary, and 4) rigorous treatment for Coulomb collision. To simulate the

dynamic transport process and formation of ambipolar electric field including non-local effects

in non-axisymmetric configurations, we have been developing the δf code FORTEC-3D to be

applicable to general 3-dimensional configurations. The formulation is explained in Sec. 2. In

FORTEC-3D, ion neoclassical transport is solved by the δf method while electron one is obtained
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from a ripple-averaged kinetic equation solver GSRAKE[10, 11], and the time evolution of Er is

solved self-consistently in the simulation. The adoption of this hybrid simulation model enables us

to simulate neoclassical transport including the FOW effect of ions within a allowable computation

time. For a demonstration of the new simulation model, we show in this paper the global simu-

lation results of time evolution of radial electric field in LHD plasmas in Sec. 3. The formation

of ambipolar Er profile in the presence of multiple roots for ambipolar condition is successfully

simulated, and it is found that the FOW effect changes the ambipolar electric field profile from

that obtained by a conventional local transport analysis.

2 Simulation model

In the δf method, time development of the perturbation of plasma distribution function from

local Maxwellian δf = f − fM is solved according to the drift-kinetic equation

Dδf

Dt
≡ ∂δf

∂t
+

(
v‖ + vd

) · ∇δf − Ctp(δf)

= −vd · ∇fM + PfM , (1)

where Ctp and P are test-particle and field-particle parts of linearized collision operator, v‖ =

v ·B/B, and vd is the drift velocity of guiding center motion across the magnetic field line. The

magnetic field is given in the Boozer coordinate system (ψ, θ, ζ)[12] as B = ∇ψ×∇θ+ ί́∇ζ×∇ψ,

where ψ is the toroidal flux, θ and ζ are poloidal and toroidal angle, and ί́ is the rotational

transform divided by 2π, respectively. In our simulation, the magnetic field configuration is

constructed from VMEC code[13] which solves MHD equilibrium state for a given pressure and

plasma current profiles. The guiding center equations of motion in the Boozer coordinates is

also described in [12]. The guiding center motion of simulation markers, of which distribution

function is expressed as g here, is traced in 5-dimensional phase space (ψ, θ, ζ, v‖, v⊥). The test-

particle collision operator Ctp is implemented numerically by random kicks of marker velocity

in the (v‖, v⊥) space. Then PfM is defined so that the three constants in exact Fokker-Planck

collision operator, i. e., total particle number, moments, and energy, should really be conserved.

The detail of collision operator used here is described in [3]. To solve eq. (1), two weights w and

p are introduced which satisfy the relations wg = δf and pg = fM . Since the time evolution of

marker distribution can be described by Dg/Dt = 0, where D/Dt means the total derivative along
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marker motion including stochastic motion by the effect of Ctp, these weights evolve according to

dw

dt
=

p

fM

[−vd · ∇+ P ] fM , (2a)

dp

dt
=

p

fM

vd · ∇fM . (2b)

Note that the FOW effect is included from vd · ∇δf term in eq. (1), which is omitted in standard

neoclassical theory.

Neoclassical particle and energy fluxes are evaluated by

Γ =

〈∫
d3vψ̇δf

〉
, (3a)

q =

〈∫
d3v

1

2
mv2ψ̇δf

〉
, (3b)

where 〈· · · 〉 means the flux-surface average. The time evolution of radial electric field E =

−dΦ/dψ∇ψ = Eψ∇ψ can be described as follows

ε0

[〈|∇ψ|2〉 +

〈
c2

v2
A

|∇ψ|2
〉]

∂Eψ

∂t

= −e [ziΓi − Γe] , (4)

where subscripts i and e describe particle species, and vA is the Alfvén velocity. The term contain-

ing vA appears because of the classical polarization drift proportional to ∂E/∂t. The neoclassical

polarization drift, which can be explained by considering the drift of bounce-averaged position
∮

dtψ̇/τb when Eψ is time-dependent, is essentially included in the evaluation of eq. (3) because

we trace the marker orbit directly in the time-dependent field without any averaging operation in

solving the equations of motion. Similarly, the orbit squeezing effect is also included in eq. (3)

since marker orbit is traced exactly including the radial excursion in a sheared Eψ field.

In our previous study for tokamak plasmas, electron particle flux Γe has been neglected because

of the smallness of it. In non-axisymmetric cases, however, Γe becomes comparable to Γi and is

needed in order to simulate the time evolution of ambipolar electric field in which Γe(ψ, Eψ) =

ziΓi(ψ,Eψ) is satisfied. The hybrid simulation model for evaluating Γe and Γi introduced in Sec.

1 is adopted since the FOW effect is expected to be important mainly on ions which have wider

radial orbit width than electrons. The details of GSRAKE code used to evaluate Γe are found

in the references[10, 11]. We would only explain it here briefly. GSRAKE solves ripple-averaged

(or so-called bounce-averaged) kinetic equation in helical systems. One advantage of GSRAKE to

other analytic models is that it treats both ripple-trapped particles and non-localized (passing)

particles on an equal foot in the formulation. It can be applicable to the whole long-mean-free-

path regime (νeff/τb << 1) and wide range of Eψ. Therefore, it is suitable to make the table
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of Γe(ψ, Eψ) in the entire simulation domain (ψ,Eψ) where the collisionality and Eψ may change

largely. The Γe-table is then referred on each step in FORTEC-3D to evaluate eq. (4). The

reliability of the result of GSRAKE in LHD configuration has been benchmarked in the above

references.

Because a magnetic coordinate system is used, we have no information beyond the last closed

flux surface (LCFS). The magnetic field spectrum is extrapolate to the outer region, and markers

which spend some time steps out of the LCFS are killed and recycled inside the LCFS. The

procedure corresponds to a orbit-loss mechanism at the boundary. Recycled marker weights

should be determined so as not to bring any physical value such as particle density, momentum,

and energy into the rebirth point. For the weight w, the easiest way is to set the new weight w = 0

for recycled markers. However, it causes a numerical noise because these recycled markers enhance

the spreading of weight field variance. In fact, the weight spreading is essentially inevitable in

the δf method[4] because two markers which have moved on different paths in the phase space

come up to the same point at the same time with bringing different weights. We have expanded

the weight-averaging technique described in Ref.[4] for the determination of new marker’s weights

as follows. (Though we only show the procedure for weight w here, it can also be applied in

determining p.)

At first, consider an averaged weight field Wij(v) in a small bin (i, j) in the velocity space

(v‖, v⊥). We assume that Wij is given in the following form

Wij(v) = W
(0)
ij + W

(1)
ij v‖ + W

(2)
ij v2. (5)

Next, the weight for existing markers wk and newly recycled ones wl in the (i, j) bin are renewed

toward Wij(v) with a damping rate γ (0 < γ < 1),

w1
k = γWij(vk) + (1− γ)w0

k, (6a)

w1
l = Wij(vl), (6b)

where overscripts 0 and 1 denote the old and new value. To make the sums of constants-of-motion

in a bin unchanged on recycling, the following relations must be satisfied.

∑

k

w0
k =

∑

k

w1
k +

∑

l

w1
l , (7a)

∑

k

w0
kv‖k =

∑

k

w1
kv‖k +

∑

l

w1
l v‖l, (7b)

∑

k

w0
kv

2
k =

∑

k

w1
kv

2
k +

∑

l

w1
l v

2
l . (7c)
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Combining eqs. (5)-(7) one obtains the following relation, which is inverted to determine W
(0,1,2)
ij ,

γ




∑

k

w0
k

∑

k

w0
kv‖k

∑

k

w0
kv

2
k




=




γkij + lij
∑

k,l

γv‖k + v‖l
∑

k,l

γv2
k + v2

l

∑

k,l

γv‖
2
k
+ v‖

2
l

∑

k,l

γv‖kv
2
k + v‖lv

2
l

∑

k,l

γv4
k + v4

l



·




W
(0)
ij

W
(1)
ij

W
(2)
ij




, (8)

where the matrix is symmetric, and kij, lij are numbers of existing and recycling markers in a bin,

respectively. We have checked the recycling procedure worked well without increasing the weight

variance at the rebirth region for 6000 computation time step which corresponds to t = 3.0τi.

By introducing the recycling technique, it is possible to trace the time evolution of radial electric

field up to a few collision times which is required to simulate the transport phenomena until the

distribution function δf comes to a quasi-steady state.

3 Transport simulation in LHD plasma

We have conducted transport simulation using FORTEC-3D in several configurations. The mag-

netic field configuration is constructed modeled on a LHD plasma[14] in which the magnetic axis

and magnetic field strength on it are Rax = 3.7m and B0 = 1.65T, respectively. The density and

temperature profiles for ions and electrons are given by the following expression




ni,e(ρ)

Ti,e(ρ)



 =





n0i,e

T0i,e



 [α1 + (1− α1) exp(−α2ρ

α3)] , (9)

where ρ =
√

ψ/ψedge is the normalized minor radius, (α1, α2, α3) = (−0.01, 3.0, 3.5) for density

and = (0.05, 4.5, 2.0) for temperature, respectively. In the first case, we set T0i = T0e = 1.0keV

and n0i = n0e = 2.0×1018m−3. The plasma collisionality is considered to be in the 1/ν regime[15]

almost in the entire plasma region. We have used 60×20×10 meshes in the ψ, θ, and ζ-directions

respectively, and 20×10 meshes in the velocity space (v‖, v⊥). The simulation domain is restricted

in one-helical pitch (0 < ζ < π/5) and a cyclic boundary condition is set in the ζ-direction. 64

millions of markers have been used in the simulation. Such a large number of markers are required

to suppress the statistical noise in the long-time simulation up to few collision times. Though the

simulation becomes heavy in the 3-dimensional cases, it takes only 10 hours to run up to 1.0τi on

the supercomputer system in NIFS owing to the high parallelization and vectorization efficiency

of the code written in HPF (High Performance Fortran).
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Figure 1 shows the radial electric field profile formed at a quasi-steady state at t = 0.5τi, where

τi is evaluated at ρ = 0.5. In this figure, the guess of the ambipolar Er profile is predicted by

solving Γi as well as Γe from GSRAKE to seek the root that satisfies Γe(Er) = Γi(Er) on each radial

position. We show here two guesses from GSRAKE by turning on/off the contribution of ∂B/∂ρ

term in the ripple-averaged kinetic equation. This term is related to the poloidal component of∇B

drift motion. Γi obtained from GSRAKE shows somewhat a oscillatory behavior on the change

of Er if the ∂B/∂ρ term is included, while Γe is not so much affected by this term. Therefore,

we show in Fig. 1 some candidates of the solution for ambipolar Er obtained from GSRAKE

calculated with ∂B/∂ρ term. Neglecting this term make the estimated ambipolar-|Er| value a

little smaller as can be seen in Fig. 1. In both cases, it is predicted that there is only a negative

root (ion root) in the entire region, and the result of FORTEC-3D is also settled in a negative

Er profile. In the outer-half of the plasma ρ > 0.5, the ambipolar Er value from FORTEC-3D

and from GSRAKE differs as much as 50%. The reason of this difference seems to be because the

ripple-averaged kinetic equation neglects these physics which are contained in the δf formulation,

such as the FOW effect, rigorous treatments of collision term, and exact drift motion without

averaging over a bounce time. Among them, we expect that the major effect which makes the

difference in Er is the FOW effect, especially for a low-collisionality plasma. Further inspection

is shown later. On the contrary, as shown in figure 2, ambipolar flux obtained from FORTEC-3D

shows a good agreement with the predictions from GSRAKE both in the case with- and without-

∂B/∂ρ term to make the Γi,e-tables. Since Γi generally has a steep peak on the negative side

close to Er = 0 as illustrated in figure 3, it is expected that a small difference of Γi between

FORTEC-3D and GSRAKE by non-local effect would change the ambipolar condition if the root

is close to the peak position. In Fig. 3, one can also see that ambipolar flux changes only slightly

on the change of the ambipolar Er because Γe is insensitive to the change of Er compared with

Γi.

As concerns the non-local effects on ion transport considered in FORTEC-3D , it can be

classified them into two. One is the finiteness of radial drift widths of helically and toroidally

trapped orbits. In tokamaks, trapped particles sometimes have a orbit width as large as several

tens % of the minor radius, and we have shown that neoclassical heat flux and ambipolar condition

in tokamaks are affected by the FOW effect of the large potato orbits appearing in the core region

of tokamaks[16, 17]. In helical LHD configuration, however, the orbit width of helically trapped

particles is small and its FOW effect is expected to be weak. A more strong effect on neoclassical

transport in LHD will arise from the FOW effect of transit orbits, which show a transition between
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helically and toroidally trapped (or passing) orbits. If the collisionality is small, some ion particles

can drift a long distance in the radial direction by transitions. The other is the direct orbit loss

at the plasma boundary. In FORTEC-3D, this effect is included by killing the simulation markers

which escape from the LCFS. Since we neglect the precise loss mechanisms of bulk ions by collisions

between neutrals or impurities and the real orbit in a stochastic magnetic field at the peripheral

region are not included, our simulation is regarded as a simple model of orbit loss by a virtual

limiter placed close to the LCFS.

In order to investigate these non-local effects on the formation of ambipolar electric field, we

carried out two simulations : (a) by changing the strength of magnetic field 4 times larger (though

it is not achievable in real LHD experiment) than in the case shown in Fig. 1, and (b) by changing

magnetic axis position to Rax = 3.6m. In both simulation, n and T profiles are the same as in

the previous case. Before explaining the simulation result, we mention here the collisionality in

these simulations. The collisional regime of helical plasma is usually classified by the normalized

factor ν∗h ≡ qR0νi/vthε
3/2
h for a single-helicity case, where νi = τ−1

i and εh = Bl,m/B0 describes

the relative magnitude of the Fourier component of the helical field. Though there is a proper

definition for εh for a multi-helicity case[15], we use an approximation that εh ' B2,10/B0 as B2,10

is the major helical component for a LHD configuration. The other two parameters used here

to distinguish the plasma collisionality are νeff ≡ νi/εh and ωE = |Er|/rB0, which represent the

effective collisionality for ripple-trapped particles and the E×B rotational frequency, respectively.

In the simulation shown here, for example at ρ = 0.7 in the Rax = 3.7 case, these parameters

are εh = 0.12, ν∗h = 0.36, νeff = 3.9 × 103, and ωE = 4.0 × 103. These parameters is almost the

same in the Rax = 3.6 case shown below. Since ν∗h ¿ 1, the plasma is well in the 1/ν regime.

Moreover, ωE ' νeff means that the collisional regime is around the transition layer from the 1/ν

regime to ν1/2 regime, where the collisionless transition between trapped and untrapped orbits as

well as the collisional diffusion of ripple-trapped particles contribute the radial transport. In this

collisionality, the radial transport level strongly depends on Er (diffusion coefficient D ∼ 1/νEr

in the 1/ν regime and ∼ ν1/2/E
3/2
r in the ν1/2 regime[15]), and the finiteness of the transition

particle orbit is expected to be effective on the particle transport.

Now let us see the simulation results in Fig. 4 and 5. In the strong B-field case, discrepancy

in the ambipolar Er between GSRAKE and FORTEC-3D is small in the edge region ρ > 0.8,

while a clear difference remains in the core region 0.2 < ρ < 0.8. If the magnetic axis is shifted to

Rax = 3.6m, one can see that the discrepancy in the ambipolar Er becomes smaller than that in

the case Rax = 3.7m. It is known that in LHD plasma, neoclassical transport level is suppressed
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by shifting the magnetic axis inward[18]. In the view of single particle orbit, this improvement of

plasma confinement is because radial excursion of transit orbit in a inwardly shifted configuration

is shrunk according as the Fourier components of the magnetic field spectrum change toward a

“σ-optimized” field[19]. Therefore, non-local effect brought by transit particles, which is correctly

evaluated in the δf simulation, is expected to be less effective on the total neoclassical transport in

the case Rax = 3.6m, and then the ambipolar Er obtained from FORTEC-3D is close to the result

from GSRAKE, which is a small-orbit-width transport model. On the other hand, improvement

in confinement of transit orbit is not expected by changing only the absolute strength of the

magnetic field. Note here that, since plasma pressure is very low (β ∼ 0.01%) in the simulations

we show here, relative magnitude of each Fourier component of magnetic field is almost fixed on

the change of absolute strength of it. From the result shown in Fig.4, it is considered that the

orbit loss transport at the edge region is suppressed because strong magnetic field shrinks the

orbit width of toroidally trapped particles, and the difference of ambipolar Er between GSRAKE

and FORTEC-3D becomes smaller in the strong B-field case. The discrepancy of the ambipolar

Er between 0.2 < ρ < 0.8 seems larger for the strong magnetic field case in Fig. 4. Note here that

the E × B drift, which reduce the radial particle drift and transport in the collisionless regime,

is proportional to Er/B. From the result of FORTEC-3D simulation in Fig.4, the fraction in the

weak and strong B-field cases at ρ = 0.5 are Er/B = 1.7 and 0.71, respectively. This suggests that

the ion flux is suppressed enough to satisfy the ambipolar condition by a weaker E×B velocity in

the stronger magnetic field case, that is, in the smaller orbit width case. Therefore, apparent large

discrepancy of Er does not contradict our assertion that the FOW effect and the suppression of it

by E×B drift are the important factors in determining the ambipolar electric field. In conclusion,

it is found that non-local effects of loss cone particles and transit particles are important for a

quantitatively reliable evaluation of ambipolar electric field.

Next, we carried out a simulation in which the electron temperature is set 1.5 times lager

than in the first case. The Γe(ρ,Er)-table constructed from GSRAKE is shown in Fig. 6. It has

a peak around Er ' 0, which is a typical tendency of neoclassical flux in the 1/ν regime. The

ambipolar condition predicted from GSRAKE is plotted in Fig. 7. Note here that the ∂B/∂ρ

term is dropped in this case in order to avoid numerical ambiguity in determining the ambipolar

roots from GSRAKE, as shown in Fig. 1. It is predicted that there are triple roots in the range

0.2 < ρ < 0.5. The middle root is an unstable root, then Er profile will be settled in either positive

or negative root. The simulation result of the δf simulation is also shown in Fig. 7. One can see a

good agreement of the resulting Er profile between GSRAKE and FORTEC-3D about the radial
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position where positive and negative roots appear. It takes 2.5τi to reach the quasi-steady state

plotted in this figure, which is much longer than the previous cases in which only an ion root is

expected. The large negative root at the edge is formed by the orbit loss of ions. It has evolved

deeper than that in Fig.1 because the simulation time is longer. It is worth noting that the edge

Er value in the simulation reached the steady state at t ' 2τi and the strong E × B rotation at

the edge region prevented simulation markers from leaking out of the plasma.

The ion root Er seen in ρ > 0.6 has a discrepancy between the results from GSRAKE and

FORTEC-3D as it is found in Fig. 1. This can be attributed to the non-local effects and to

the smallness of ambipolar |Er| of GSRAKE estimation without the ∂B/∂ρ term. On the other

hand, positive root (electron root) shows a good agreement between these two numerical codes.

Generally, neoclassical flux is suppressed in an electron root compared with that in an ion root.

This tendency can also be seen in Fig. 9 mention later, which shows the change in Γi before

and after the transition from the ion to electron root. The suppression of Γi in positive electric

field means that the typical radial drift width is also suppressed in the presence of positive-Er.

Therefore, the the non-local contribution on neoclassical flux in the δf code is expected to be

smaller in the electron root, and accordingly the resultant ambipolar field profiles from GSRAKE

and FORTEC-3D become closer. In the middle layer 0.4 < ρ < 0.6, the electric field profile

obtained from FORTEC-3D shows an oscillatory behavior. Bifurcation of ambipolar condition

occurs in this layer, and we think the oscillation is because of a numerical unstableness of FORTEC-

3D at the discontinuous layer of radial electric field in the time evolution of Er according to eq.

(3). More suitable numerical method for the evolution of Er field, which may have discontinuous

points in the radial direction as shown in Fig. 7, should be adopted in the future.

The time development of Er and Γi on the flux surfaces ρ = 0.30, 0.35, and 0.40 are plotted

in Fig. 8 and 9, respectively. Note that the time evolution of radial electric field as well as that of

weight w are stopped artificially in the initial phase until t = 0.2τi to avoid too much large spike

at the onset of the oscillation of Er and Γi. On these surfaces, the radial electric field oscillates

rapidly around the negative root in the beginning phase. By taking the power spectrum, the

oscillation is identified as the geodesic acoustic mode as shown in Fig. 10, of which frequency is

estimated as ωGAM =
√

7vth/2R0[2] from neoclassical transport analysis in a simple circular-cross

section tokamak case, where vth is the ion thermal velocity on each flux surface. The GAM oscilla-

tion damps and Er on each surface settles in the negative root. Then, a transition of Er happens

on ρ = 0.30 at t = 0.8τi and one can see the transition propagating to the outer surfaces in Fig.

8. Since our δf code treats the evolution of plasma as an initial value problem without any source

10



terms in it, the final steady Er profile depends on the initial settings of plasma state. Therefore,

there is also a possibility of steady ion root in some initial condition or by introducing source/sink

terms to the simulation. Unlike in the local transport analysis like GSRAKE which solves the

ambipolar condition independently on each single flux surface, evolution of ambipolar Er profile in

a global simulation is determined from the total balance of particle and momentum transport in

the whole plasma region. Though the details of the triggering mechanism is still unclear because

we have examined only one case, the simulation result shows that the transition and formation of

ambipolar electric field has a non-local nature in it.

4 Summary

We have developed a neoclassical transport simulation code FORTEC-3D to investigate non-

local and time-dependent phenomena in neoclassical transport in non-axisymmetric systems like

LHD. It has been shown in this paper that the our hybrid simulation model to solve ion and

electron fluxes worked successfully and that non-local neoclassical transport affects the magnitude

of ambipolar electric field. It has also been found that a non-local transition mechanism is exist.

Therefore, we think that the importance of using the global transport simulation model as we

introduced here becomes clear in the investigation of the transport phenomena in the short time

scale such as the formation and transition of ambipolar electric field in non-axisymmetric systems.

We will continue to develop the δf code in order to solve the unstableness in the time evolution

of Er at the point where Er profile changes from positive to negative root, and plan to investigate

those issues above from the detailed simulation using FORTEC-3D.

As shown in Fig. 7, a strong negative Er is formed at the edge region. It is because of the

orbit loss of ions at the LCFS. The killing and recycling processes for markers adopted here are an

artificial ones and do not reflect physical processes happening in the edge region of plasma such

as charge exchange and re-entering of ions. Introducing such physical mechanisms will makes it

possible to simulate the formation of the edge transport barrier. To introduce physical source or

sink term, the procedure of marker recycling explained in Sec. 2 can be extended by adding a

source term in the lhs of eq. (7). The improvement of simulation model by adding the source and

sink terms will make it possible to apply the simulation to various studies concerning to neoclas-

sical transport phenomena and to use it for the comparison with experimental data.
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Fig. 1 : Ambipolar electric field profile in the case B0 = 1.65T, Rax = 3.7m, and Te = Ti =

1.0keV on the magnetic axis. The horizontal axis is the normalized minor radius ρ =
√

ψ/ψedge.

Diamond marks are the simulation result of FORTEC-3D, and circles and squares are guesses

from GSRAKE. The dashed line is the initial Er profile given in FORTEC-3D.
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Fig. 2 : Comparison of ambipolar particle flux between GSRAKE (circles and squares) and

FORTEC-3D simulations (solid and dashed lines). The circles and solid lines are results by using

Γi,e-tables of GSRAKE neglecting the ∂B/∂ρ term, while this term is included in the results

plotted by squares and dashed lines.
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Fig. 3 : Illustration of particle fluxes Γi and Γe seen as functions of Er. By including the ∂B/∂r

term (poloidal component of ∇B drift) and non-local effects, ambipolar Er changes 1 → 2 → 3

according to the change in Γi.
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Fig. 4 : Comparison of ambipolar electric field in different strength of the magnetic field.

Open circles and squares are the predictions from GSRAKE, and diamond and triangle marks are

the results of FORTEC-3D at t = 0.5τi.
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Fig. 5 : Ambipolar electric field profile in a inward-shift configuration (Rax = 3.6m).

Fig. 6 : Contour-plot of Γe-table calculated by GSRAKE in the case Te = 1.5, Ti = 1.0keV on

the magnetic axis. It has a peak at ρ ' 0.35, Er ' −1.0keV .
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Fig. 7 : Ambipolar electric field profile simulated by using the Γe-table in Fig. 6 when it

reaches a quasi-steady state at t = 2.5τi. Between the region 0.2 < ρ < 0.5, multiple roots for

ambipolar condition Γe = Γi is expected from GSRAKE, and the result of FORTEC-3D shows a

bifurcation from negative to positive root in that region. A strong negative Er at the edge region

is formed as a result of ion orbit-loss occurred there.
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Fig. 8 : Time evolution of the radial electric

field on the flux surfaces ρ = 0.30, 0.35, and

0.40 in the same case as in Fig. 7. The hori-

zontal axis is the simulation time normalized

by τi(ρ = 0.5).

Fig. 9 : Time evolution of the radial particle

fluxes on the flux surfaces ρ = 0.30, 0.35,

and 0.40 in the same case as in Fig. 7. Solid

line is the ion particle flux Γi and dashed line

is Γe (almost hidden by the solid line).

Fig. 10 : The power spectrum of Er oscillation taken in the time span 0.2 < t/τi < 0.5

on ρ = 0.35 surface shown in Fig. 8. The theoretical value of GAM frequency is given by

ωGAM =
√

7vth/2R0.
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