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Abstract. Collisionless damping of the geodesic acoustic mode (GAM) is investigated by a drift kinetic sim-
ulation. The main subject of the study is to analyze how the magnetic configuration and the finite-orbit-width
(FOW) effect of the ion drift motion affect the collisionless damping of GAM. We utilize the neoclassical
transport code "FORTEC-3D", which solves the drift kinetic equation based on the delta-f method, to study
these issues. In recent analytical study on GAM and zonal flow it is found that the FOW effect and the heli-
cal components of magnetic field spectrum change the damping rate of the GAM oscillation. We inspect the
change of the damping rate in our simulation. First, the dependence of the damping rate on the FOW effect
is investigated. We find that the collisionless damping becomes faster as typical banana width becomes wider.
On the other hand, the damping rate in helical magnetic configuration is mainly determined by the effect of
helical ripples. It is found that the sideband components, which appear as the axis moves inward, make the
GAM damping faster. This result suggests the possibility of controlling both the neoclassical transport level
and the GAM oscillation, or zonal flow, in helical plasma. The collisional effect on the GAM damping is also
investigated in banana and plateau regimes.

1. Introduction

Zonal flow and the GAM oscillation in toroidal plasmas have been investigated intensively
in the recent fusion research, as it is expected that the zonal flow suppresses micro insta-
bilities and anomalous transport. Theoretical investigations and simulation studies on these
issues have been done in several models. Recently the analysis have been extended for heli-
cal configurations by Watast al[1] based on the drift kinetic model, and also by Sugama
and Watanabe[2] based on the gyrokinetic model. They showed that the GAM frequency
and damping rate in helical plasmas depend on the magnetic field spectrum. Sugama and
Watanabe also suggested that the GAM damping becomes rapider if the finite-orbit-width
(FOW) effect of particle drift orbits is considered in gyrokinetic model. Another interest

in GAM oscillation is the collisional damping process. A summary of the previous work
concerning collisional damping of poloidal rotation can be found in Lebedev’s paper[3].
In the present article, we inspect these effects by using a numerical simulation. For this
purpose, we adopt the neoclassical transport code FORTEC-3D[4], which solves the drift
kinetic equation for ions in five-dimensional phase space. FORTEC-3D properly treats the
finite-orbit-width effect and Coulomb collision operator, and can solve drift kinetic equation

in general three-dimensional magnetic field configuration. The time evolution of the radial
electric field of the whole plasma confined region can be solved at once. In that sense, our
study is an extension of the previous research by Novakoeskil[5] which investigated

the GAM damping in tokamak using a drift kinetic equation solver on a single flux surface.
Here, we inspect how the FOW effect, three-dimensional magnetic configuration, and colli-
sions affect the GAM oscillation. Usually drift kinetic simulations require less computation
resources and are easier to conduct non-local, global simulation compared with gyrokinetic
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ones. Therefore it is useful to obtain the knowledge about GAM, though our simulation can-
not treat nonlinear saturation of zonal flow, which is one of the main subjects in gyrokinetic
study.

The remainder of this paper is organized as follows: In Sec. 2, the simulation model is
briefly explained. Expectation on the behavior of GAM from Sugama and Watanabe’s theory
are also mentioned there. In Sec. 3 to 5, we investigate (i) the finite-orbit-width effect, (ii)
the effect of helical magnetic configuration, and (iii) collisional damping of GAM. Section
6 contains the summary and discussion of the result.

2. Simulation model

A magnetic coordinate$p, 6, ¢) is used to represent magnetic field, where= /1 /v,

is a radial coordinate and, is the toroidal flux label on the boundary. To solve the time
development of a plasma distribution function in the phase spa¢e(, K = v u =
mvi/2B) the drift kinetic equation for perturbatiayy = f — f,

O = | K+ v = Gy 0 = —va- (V= 2) fu+ P @)
is considered. Herdl, = —d®/dpVp is radial electric fieldy, is the drift velocity of a
guiding center, and,, is a local Maxwellian. It is assumed that density, temperature, and
electrostatic potentiab are flux-surface variables. The test-particle collision oper@fprs
implemented numerically as a random kick in the velocity space. The field-particle collision
operatorP f,, is defined so as to satisfy the conservation lows for particle number, parallel
momentum, and energy[6]. Note that the FOW effect is included in thexgr¥i ¢ f, which

is usually dropped in standard local transport models. We adopted the two-weight scheme[7]
Monte-Carlo method to solve Eq. (1). Two weights of the simulation markandp which

satisfy the relationvg = 6 f, pg = fy are introduced, wherg is the distribution function

of simulation markers. Each marker follows the track in the phase space according to the |hs
of eq. (1), thatispg/Dt = 0. Then the evolution of weights for each marker is as follows:

) P ek,
w -— V——]+7P : 2
g e (T )+ 7] o @
R
p = —Vgq- (V——) fM (3)
I
Next, self-consistent time evolution of the radial electric field is solved according to
62 aE 7t neo neo
(0908 + (5190 ) ) P00 — e z0y0 — 12 @
v ot
where the ion flux is obtained by taking volume averaged radial flow
1
neo _ 31 5 . ~ N
I3 (p) = </d vp 5fz>p AV Z Wjpj (5)
{jlx;€eAV}

within a thin layerAV (p) which contains the flux surfage In tokamak cased,’< is negli-
gible since|l". /T';| ~ O(y/m./m;). In non-axisymmetric cases, howevEf;° is compara-
ble tol'}*’ and the balance between these two fluxes determines the amhipofince ion
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and electron fluxes are strongly dependenttrin the low-collisionality regime, we need

a proper evaluation for, as well asI’; to evaluate neoclassical flux or to simulate GAM

in helical plasma. However, solving both ion and electron transpobtfbscheme is not a
practical way because the orbit time scales of two species are too separated. Then, only the
ion part is solved by using thef method. The table df?“°(£,, p) for a given profile is pre-

pared by GSRAKE][8], which solves the bounce-averaged drift kinetic equation numerically,
and the table is referred to at each time step in solving Eq. (4) in FORTEC-3D. Therefore,
the FOW effect of electrons and the rapid adiabatic response of electrons along the magnetic
field lines are neglected in our model.

Now let us mention briefly about the effect of the helical components of magnetic field
and the finite-orbit-width effect suggested from Sugama and Watanabe’s gyrokinetic model.
In their analytical approach, they retained the 1st-order correction of the FOW effect of
passing particle and the effect of helical components of Fourier spectrum of th&figlih
evaluation the damping rate of oscillating GAM. From the FOW effect, not only the passing
particles which satisfy the resonant conditior v/ Ryq = 0 but also the second harmonics
w — 2v/Rog = 0 can contribute collisionless Landau damping of GAM. The heligal,
modulate particle motion along the field line and change the damping rate and the GAM
frequency. The FOW effect always enhances the damping rate, but the contribution of helical
ripples are more complicated. In a approximated form they derived, the dependency of the
damping rate on magnetic field is represented as a function of relative magnitude of each
componentB,, ,,/ Boo. Our model, in which only the flux-surface averaged poteritigi)
is considered and the electron motion is neglected, corresponds to the cold-electron limit
T./T; — 0 of their model. However, the basic physics of collisionless GAM damping are
retained in our drift kinetic model, and our simulation results can be used to expect the
behavior of GAM oscillation with these effects considered here.

3. Collisionless GAM damping (i) Finite-orbit-width effect

Here, to investigate the finite-orbit-width effect, we conduct simulations in a simple tokamak
geometry. The safety factor is flat~ 2.5, and the major and minor radius alg = 3.5m

anda = 1.0m, respectively. Collision terms are artificially dropped in these calculations.
The radial excursion of drift orbit is controlled by changing the strength of the magnetic
field on the axisB,|. Figure 1 shows the time evolution of ion neoclassical flux on two flux
surfaces with differentB,|. One can see that the GAM damping is rapideBass smaller,

i. e. , as the drift width becomes larger. In Fig. 2, the damping rate is evaluated from
the envelope shape of the wave pattern in Fig. 1. Here, we assume a exponential damping
I, ~ Toexp|—(y — iw)t]. Sugama and Watanabe’s analysis shows the same tendency of
the damping rater on the magnetic field strength, i. e., for a fixed radial wave lergth

the larger the ion gyroradiys o« v,/ B is, the faster the GAM damping rate is. Thus it is
confirmed that the FOW effect enhances collisionless damping. It is to be noted, if the FOW
effect is neglectedi(.p; — 0 in the formula in Ref.[2]), the damping rate is abdyt 0 of

that obtained from our simulations. Therefore, the rapid damping we found in simulations
cannot be explained without the FOW effect. Since bounce frequency of trapped particle is
much smaller than the GAM frequeney; ~ v/7v,h/2R,, trapped particles are not so much
involved in the resonant damping process. Typical radial excursion of passing particles is
aboutgp;, however, as we have shown here, even the small FOW eftept << 1 brings
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substantial enhancement of GAM damping. It also suggests that the FOW effect on GAM is
significant for high temperature core region where the gyroradius is large. It explains why

the damping rate changes larger on the inner flux surface compared with the outer surface,
as shown in Fig. 2.
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FIG. 1: Time evolution of the ion flux in different magnetic field strength.
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FIG. 2: Dependence of collisionless
GAM damping rate on magnetic field
strength.
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4. Collisionless GAM damping (ii) effect of helical magnetic field

To see the effect of helical magnetic field on GAM, several calculation were carried out.
A model Large Helical Device (LHD) configurations are used, with different magnetic axis
positionR,, =3.52, 3.62, and 3.77m. The magnetic field is expressed in Boozer coordinates
asB(p,0,¢) = > .., Buan(p)cos(md — 10n(). Note that the current profile was controlled

in obtaining MHD equilibrium so that the rotational transform profiles become the same
among these three configurations. This is because the GAM damping rate also depends on
the value of:, and we intend to see the difference of damping rate when only the Fourier
component of the magnetic field,, ,, changes.
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The LHD configuration withR,, =3.77 has the most simple components, in which only
three component&n,n) = (0,0), (1,0) and(2, 1) are significant. As the magnetic axis
shifts toward inward, sideband components sucfras:) = (0, —1), (1,1) and(3, 1) arise.

The major components d@,, ,, are shown in Fig. 3. Inwardly shifted configuration is known

as an optimized configuration to reduce neoclassical transport. Then it is interesting to see
how the behavior of GAM changes in the optimized configuration. On the other hand, we are
also interested in investigating which componefts,, are effective to change the behavior

of GAM. Therefore, the simulations were done by gradually changing the numldgy, pf
components used in FORTEC-3D calculation, from only the most significant 3 components
to 6, and 12 components, which include higkwer:n) spectrum.

Rax=3.52, By=2.44 Rax=3.77, Bj=2.31
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FIG. 3: Fourier components of the magnetic configuration with =3.52 and 3.77m. Here, the line
of (0,0) representsBy o(p) — Bo.

An example of the time evolution of the particle flux and radial electric field are shown in
Fig. 4. The GAM oscillation is gradually damping, and finally settled in the ambipolar sta-
tusT';(p) = I'.(p). One can see the amplitude of GAM, the frequency, and the damping
rate differ according to the major radius. The damping rate is evaluated as in the same way
shown in the previous section, and the result is shown in Fig. 5. Generally, the collisionless
damping ratey is much higher in LHD configurations compared with that in a compara-
ble scale tokamak. Consequently, the FOW effect on damping rate is not so significant in
helical configurations. Only one helical componét; added to axisymmetric tokamak

field changes damping rate significantly, as one can see by comparing Fig. 2 and the three-
components calculation results in Fig. 5. Concerning to the shift of major axis, the inward
shift configurationk,, =3.52 shows a remarkable enhancement,@&specially in the inner

flux surface. However, in the calculation where only three Fourier components are used,
the relative strength of these componefits n) = (0,0), (1,0) and(2, 1) changes not so
much. Therefore, it seems that not only the relative strength of each components, as shown
in Sugama and Watanabe’s analysis, but also the change of geometry, or the change of the
geodesic curvature, affect the GAM damping rate. Moreover, the damping rate changes in
the R,, =3.52 case largely if as much as 12 components are used in FORTEC-3D. In that
case, the relative strength of these higher-) components are only a few % of the total
magnetic field strength, but we found these small components are also effective for the col-
lisionless damping of GAM. Note that in a realistic LHD configuration, tkralue becomes

larger and close to or go above unity as the magnetic axis moves inward. Then strong reso-
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nant damping of GAM will occur in the inwardly-shifted configuration, though in the present
calculation the profile is fixed below unity.
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FIG. 4: Example of GAM oscillation in LHD configuration gh= 0.50 surface. Here, the most
significant 6 components of magnetic field spectrum are used in calculations.
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FIG. 5: Comparison of GAM damping rate in different configuration on three surfaces.
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5. Effect of Collisions on GAM damping

Next, we inspect here the dependency of GAM damping on Coulomb collision. As colli-
sionless damping is too fast in helical systems, we compare the collisional GAM damping in
the simple tokamak geometry used in Sec. 3. Simulations were carried out in five different
collisionalities, from collisionless limit to plateau regimg~ 2, wherev; = v;;qRy /€% >vy,

is the normalized collisionality. The collisionality is controlled by varying ion density, but
the same magnetic field was used in these simulations. Figure 6 shows the time evolution
of the ion flux in each collisionality. As the collisionality becomes higher, the beat pattern,
which is considered as a non-local effect, disappears. In plateau regime, the wave form be-
comes a simple exponential damping, as found in Novakovskii’s calculation[5] which does
not contains any non-local effects. However, as shown in Fig. 7, we cannot find clear depen-
dency of the damping rateon collisionality. Several fittings for the result concerning to the
dependence on the inverse aspect-rati@re tested. It is found, as shown in Fig. 8, that the
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collisional damping rate seems to have the dependeney;; /¢ in plateau to banana-plateau
transition regimes;; >~ 1. In banana regime, collisionless damping becomes dominant,
and~ approaches the collisionless-limit value.

r=0.325

l ' -
w/o collision |

ion flux [arb. unit]

0 0.001 , [s]

FIG. 6: Time evolution of the ion flux in a tokamak configuration in different collisionality.
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FIG. 8. Dependence of the GAM damping rate

FIG. 7: Dependence of the GAM damping rate ,, ojisionality and inverse aspect-ratio

on three positions in different collisionality.

6. Summary

In the present article, we have shown several simulation results about collisionless and col-
lisional damping of GAM in a drift kinetic model. It was found that the finite-orbit-width
effect considerably changes the collisionless damping rate as suggested in Ref.[2]. Further,
we found that the inward-shifted LHD configuration has a large collisionless damping rate
for GAM. Miyato et al[9] has suggested, in the study of global characteristics of zonal flow
by using Landau fluid simulation, that if the oscillatory zonal flow, i. e., GAM damps well,
then the residual zonal flow can quench microscopic turbulence. Then it is expected that the
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neoclassical optimized LHD configuration would also be desirable for suppressing anoma-
lous transport by zonal flow. However, our simulation model cannot predict the residual
zonal flow level. Comprehensive understanding of zonal flow and GAM oscillation, with
consideration of non-local and neoclassical effect, would be achieved only by intensive col-
laboration study between drift kinetic and gyrokinetic studies.

Concerning to the effect of collisions, several existing results for the damping rate depen-
dency orx in Ref.[3]. Among them, Stix’s analysis[10] for banana region predijcts v; /¢.
However, we need to examine more widely in the parameter space to understand the colli-
sional damping effect on GAM, especially in the case both the collisional and collisionless
damping are comparable.
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