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Quantum Nernst Effect

Hiroaki Nakamura1 ∗, Naomichi Hatano2, and Ryōen Shirasaki3
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2Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505
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It is theoretically predicted for the two-dimensional electron gas that the Nernst coefficient is
strongly suppressed and the thermal conductance is quantized in the quantum Hall regime. The
Nernst effect is the induction of a thermomagnetic electromotive force in the y direction under a
temperature bias in the x direction and a magnetic field in the z direction. The quantum nature
of the Nernst effect is analyzed with the use of edge currents and demonstrated numerically.

KEYWORDS: Nernst effect, Nernst coefficient, edge current, quantum Hall effect, thermoelectric power,
thermomagnetic effect

Introduction: The (adiabatic) Nernst effect in a bar of
conductor is the generation of a voltage difference in the
y direction under a magnetic field in the z direction and
a temperature bias in the x direction (Fig. 1). Each of
the left and right ends of a conductor is attached to a
heat bath with a different temperature, T1 at the left
end and T2 at the right end. An insulator is inserted in
between the conductor and each heat bath, so that only
the heat transfer takes place at both ends. A constant
magnetic field B is applied in the z direction. (In what
follows, we always put T1 > T2 and B > 0.) Then the
Nernst voltage VN is generated in the y direction.

A classical mechanical consideration on this thermo-
magnetic effect yields the following: a heat current flows
from the left end to the right end because of the tem-
perature bias; the electrons that carry the heat current
receive the Lorentz force from the magnetic field and
deviate to the upper edge; then we have VN < 0. The
Nernst coefficient is defined as

N ≡ VN/W

B∇xT
, (1)

where the temperature gradient is given by ∇xT =
−(T1 − T2)/L with W and L being the width and the
length of the conductor bar. The above naive consider-
ation gives a positive Nernst coefficient. In reality, the
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Fig. 1. A setup for observation of the (adiabatic) Nernst effect.

The Nernst voltage VN is defined as such that it is positive when

the voltage of the upper edge is higher than the voltage of the
lower edge.
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Nernst coefficient can be positive or negative, depending
on the scattering process of electrons.

The Nernst effect was extensively investigated in the
1960’s1) because of a possible application to conversion
of heat to electric energy. The investigation on the energy
conversion was eventually abandoned, since induction of
the magnetic field cost lots of energy in those days. The
Nernst effect, however, has recently seen renewed inter-
est;2–4) improvement of the superconducting magnet has
led to more efficient induction of a strong magnetic field.
This is a background of recent studies on the Nernst ef-
fect at temperatures higher than the room temperature.

In the present paper, we direct our attention to the
Nernst effect in the quantum Hall regime, that is, the
Nernst effect of the two-dimensional electron gas in
semiconductor heterojunctions at low temperatures, low
enough for the mean free path to be greater than the sys-
tem size. Using a simple argument with edge currents,5)

we predict that, when the chemical potential is located
between a pair of Landau levels, (i) the Nernst coefficient
is strongly suppressed and (ii) the thermal conductance
in the x direction is quantized.

Predictions: Let us first briefly explain our basic idea
(Fig. 2). Since there is no input or output electric cur-
rent Ie, an edge current circulates around the Hall bar
when the chemical potential is in between neighboring
Landau levels. The edge current along the left end of the
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Fig. 2. A schematic view of the dynamics of electrons in a Hall
bar under the setup for the Nernst effect.
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Hall bar is in contact with the heat bath with the tem-
perature T1 and equilibrated to the Fermi distribution
f(T1, µ1) with the temperature T1 and a chemical poten-
tial µ1 while running from the corner C4 to the corner
C1. Since the upper edge is not in contact with anything,
the upper edge current runs ballistically, maintaining the
Fermi distribution f(T1, µ1) all the way from the corner
C1 to the corner C2. It then encounters the other heat
bath with the temperature T2 and equilibrated to the
Fermi distribution f(T2, µ2) while running from the cor-
ner C2 to the corner C3. The lower edge current runs
ballistically likewise, maintaining the Fermi distribution
f(T2, µ2) all the way from the corner C3 to the corner
C4. The Nernst voltage VN = ∆µ/e is thus generated,
where ∆µ ≡ µ1 − µ2 and e(< 0) denotes the charge of
the electron.

First, the difference in the chemical potential, ∆µ, is
of a higher order of the temperature bias ∆T ≡ T1 −
T2, because the number of the conduction electrons is
conserved. The Nernst coefficient (1), or

N =
1
|e|B

L

W

∆µ

∆T
, (2)

hence vanishes as a linear response. Second, the heat cur-
rent IQ in the x direction is carried ballistically by the
upper and lower edge currents. The edge currents do not
change much when we vary the magnetic field as long as
the chemical potential stays between a pair of neighbor-
ing Landau levels. The heat current hence has quantized
steps as a function of the magnetic field.

Two-dimensional electron gas: We now describe the
above idea explicitly. In order to fix the notations, we
begin with the basics of the two-dimensional electron gas
in a magnetic field. The dynamics of the two-dimensional
electron gas is described by the Schrödinger equation

[
(px + eBy)2

2m
+

p2
y

2m
+ V (y)

]
Ψ(x, y) = EΨ(x, y), (3)

where the energy is measured from the subband of
the confining potential in the z direction. The poten-
tial V (y) is the confining potential in the y direction,
shown schematically in Fig. 3. We can express the eigen-
function of eq. (3) in the form of variable separation:
Ψ(x, y) = eikxχk(y)/

√
L, where k = 2πj/L with an in-

teger j. The transverse part χk(y) is an eigenfunction of
the equation Hkχk(y) = Eχk(y), where the Hamiltonian
is given by

Hk ≡
p2

y

2m
+

mω2
c

2
(y − yk)2 + V (y) (4)

with ωc ≡ |e|B/m and yk ≡ ~k/(|e|B). The solutions
are discrete and we label them with an integer n. Af-
ter all, the whole solution is given by Ψn,k(x, y) =
eikxχn,k(y)/

√
L with an eigenvalue E = E(n, k). As is

schematically shown in Fig. 3, the eigenvalue E(n, k) in
fact scarcely depends on k in the bulk, where the confin-
ing potential V (y) is flat.5,6)

The Hamiltonian (4) shows that an eigenfunction with
the x component of the momentum, ~k, is centered
around y = yk ∝ k. In other words, the state in the
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Fig. 3. A schematic view of the transverse confining potential

V (y), on which the structure of the Landau levels is super-

imposed. The central part of the potential, |y| < w/2, is flat,
whereas the potential edges w/2 < |y| < W/2 may have some

curvatures.

upper half of the Hall bar has a current in the positive
x direction, while the one in the lower half has a current
in the negative x direction. The velocity of the electron
in the state Ψn,k is

v (n, k) =
1
~

∂E(n, k)
∂k

, (5)

which remains finite only near the upper and lower edges.
These are the edge currents.

Electric and heat currents: Now we write down the
electric current Ie and the heat current IQ in the x di-
rection carried by electrons. (Note that we will put Ie = 0
in the bottom line, observing the boundary conditions in
Fig. 2.) The currents are given by

Ie =
1
L

∞∑
n=0

∑

k,↑↓
ev (n, k) fn,k (T (yk), µ(yk))

=
e
π

∞∑
n=0

∫ km

−km

v (n, k) fn,k (T (yk), µ(yk)) dk,(6)

IQ =
1
π

∞∑
n=0

∫ km

−km

(E(n, k)− µ)×

v (n, k) fn,k (T (yk), µ(yk)) dk, (7)

where we made the summation over k to the momentum
integration. The upper and lower limits of the integra-
tion, ±km, are the maximum and minimum possible mo-
menta. The function fn,k denotes the Fermi distribution
f(T, µ) = {1+exp[(E−µ)/(kBT )]}−1 with E = E(n, k).
Because of the layout in Fig. 2, the temperature T (yk)
and the chemical potential µ(yk) are T1 and µ1 for the
upper edge states and T2 and µ2 for the lower edge states.

We transform eq. (6) with the use of eq. (5) as

Ie =
e
π

∞∑
n=0

[ ∫

upper

v(n, k)fn,k (T1, µ1) dk

+
∫

lower

v(n, k)fn,k (T2, µ2) dk

]
,
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=
e

π~

∞∑
n=0

∫ E1(n)

E0(n)

[f (T1, µ1)− f (T2, µ2)] dE.(8)

Here
∫
upper

and
∫
lower

denote the integrations with re-
spect to the upper and lower edge states, respectively.
The lower limit of the energy integration is E0(n) =
E(n, 0), while the upper limit is E1(n) = E(n, km) (see
Fig. 3).

In order to compute the linear response, we here put
T1 = T + ∆T/2, T2 = T − ∆T/2, µ1 = µ + ∆µ/2,
and µ2 = µ − ∆µ/2, with ∆T ¿ T and ∆µ ¿ µ. By
expanding eq. (8) with respect to ∆T and ∆µ, we have

Ie ' e
π~

∞∑
n=0

∫ E1(n)

E0(n)

(
∂f

∂µ
∆µ +

∂f

∂T
∆T

)
dE

=
e

π~

[
∆µ

∞∑
n=0

A0(n) + kB∆T
∞∑

n=0

A1(n)

]
, (9)

and similarly

IQ ' kBT

π~

[
∆µ

∞∑
n=0

A1(n) + kB∆T
∞∑

n=0

A2(n)

]
, (10)

where

Aν(n) ≡
∫ x1(n)

x0(n)

xνdx

4 cosh2 (x/2)
(11)

with xi(n) ≡ (Ei(n)− µ) /(kBT ). The integral (11) can
be carried out explicitly as

A0(n) =
[
1
2

tanh
x

2

]x1(n)

x=x0(n)

, (12)

A1(n) =
[x

2
tanh

x

2
− log cosh

x

2

]x1(n)

x=x0(n)
, (13)

A2(n) =
[
2Li2

(−e−x
)− 2x log

(
1 + e−x

)

− x2

2

(
1− tanh

x

2

) ]x1(n)

x=x0(n)

, (14)

where Lin(z) =
∑∞

m=1 zm/mn is the polylogarithmic
function.

Since there is no input or output current in the setup
in Fig. 1, we put Ie ≡ 0, relating ∆µ with ∆T as

∆µ = −
∑

n A1(n)∑
n A0(n)

kB∆T. (15)

We thereby arrive at the adiabatic Nernst coefficient
eq. (2) in the form

N = − kB

|e|B
L

W

∑
n A1(n)∑
n A0(n)

. (16)

The heat current (10) and eq. (15) yields the thermal
conductance GQ in the form

GQ ≡ IQ

∆T
=

kB
2T

π~

[∑
n

A2(n)− (
∑

n A1(n))2∑
n A0(n)

]
. (17)

Low-temperature limit : In the low-temperature limit,
the upper and lower limits of the integration in eq. (11)
goes to ±∞, depending on their signs. First, in the

usual experimental situation, the confining potential at
its edges (of the order of eV) is considerably higher than
the chemical potential (of the order of meV); hence we
assume E1(n) > µ for all n. The upper integration limit
x1(n) thus always goes to +∞ as T → 0. Next, sup-
pose that the chemical potential is located in between
the bottom of the Mth Landau level and the bottom
of the (M + 1)th one. The lower integration limit x0(n)
goes to +∞ for n ≥ M + 1 and the integration van-
ishes as T → 0. The integration can survive only for
n ≤ M , for which the lower integration limit x0(n) goes
to −∞ as T → 0, yielding A0(n) = 1, A1(n) = 0, and
A2(n) = π2/3. (The integration Aν for odd ν vanishes as
the integrand is an odd function.) Thus we arrive at the
predictions

N = 0 and
GQ

T
=

πkB
2

~
(M + 1)

3
(18)

when the chemical potential is located in between the
bottoms of a pair of the neighboring Landau levels.

Numerical demonstration: Let us demonstrate the
quantum Nernst effect by adopting the following con-
fining potential:7)

V (y) =

{
0 for |y| ≤ w

2 ,
mω2

0
2

(|y| − w
2

)2 for w
2 < |y| < W

2 .
(19)

The parabolic parts near the edges cause a shift of the
center of χk(y) from yk to Yk ≡ (ω2

cyk+ω2
0w/2)/ω2

c0. The
upper limit of the momentum integration is then given
by Ykm = W/2. The eigenvalues are well approximated
in each region by tentatively regarding that the potential
there continues for all y.5) This gives8–10)

E(n, k) '





(
n + 1

2

)
~ωc for |yk| ≤ w

2 ,
(
n + 1

2

)
~ωc0 +

(
ωc0
ωc

)2
mω2

0(|Yk|−w/2)2

2

for w
2 < |yk| < W

2 ,
(20)

where ωc0 ≡
√

ω2
c + ω2

0 . This approximation is valid be-
cause, in the parameter range that we use below, the
width of the eigenfunction χn,k(y) for low n is much less
than w, W and W − w; that is, each eigenfunction is
well localized in the y direction and insensitive to the
potential elsewhere. The mismatch of the approximated
eigenvalue (20) at |y| = w/2 is much smaller than the
eigenvalue itself because ω0 ¿ ωc in the parameter range
below.7) Furthermore, the eigenvalue is shifted to6)

E(n, km) ' [
(2n + 1) + 1

2

]
~ωc0 +

(
ωc0
ωc

)2
mω2

0(W−w)2

8

(21)
right on the edges. This shift contributes only to a shift
of x1(n), which is in fact irrelevant because x1(n) is vir-
tually infinite anyway.

We set the parameters as follows: the effective mass is
m = 0.067m0 for GaAs, where m0 is the bare mass of the
electron. The sample size is L = 20µm and W = 20µm
(less than the mean free path at low temperatures11))
with w = 16µm. The confining potential is given by
V (±W/2) = 5.0eV, the work function of GaAs. The
chemical potential is µ = 15meV, which means the car-
rier density ns = 4.24× 1015m−2.
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Fig. 4. The magnetic-field dependence of the adiabatic Nernst

coefficient at T = 1, 5, 10 and 20K for 1T ≤ B ≤ 20T; (a) the

raw data and (b) a scaling plot of N ×B against 1/B.

Using these values, we obtained the adiabatic Nernst
coefficient (16) as in Fig. 4 and the thermal conduc-
tance (17) as in Fig. 5. We see that our predictions are
indeed realized at low temperatures. We also note that
the Nernst coefficient is negative.

Summary : We predicted a prominent quantum effect
in the Nernst coefficient and the thermal conductance of
the two-dimensional electron gas, which is closely analo-
gous to the quantum Hall effect. As long as the chemical
potential stays in between the bottoms of the neighboring
Landau levels, the quantized nature of the edge currents
suppresses the Nernst coefficient and fixes the thermal
conductance.

The precise forms of the peaks in Fig. 4 and the steps
in Fig. 5 may be different from the reality. This is be-
cause our argument using the edge currents is not appli-
cable when the chemical potential reaches the bottom
of a Landau level, namely when µ = (n + 1

2 )~ωc, or
1/B = (n + 1

2 )~|e|/mµ. There the heat current is car-
ried by bulk states as well as the edge states. We then
have to take account of impurities and possibly electron
interactions.12)

Comments on other approaches to the quantum Nernst
effect are in order. Kontani derived13,14) by the Fermi
liquid theory general expressions of the thermoelectric
power, the Nernst coefficient, and the thermal conductiv-
ity of strongly correlated electron systems such as high-
Tc materials. Akera15) analyzed the Ettingshausen effect,
the reciprocal of the Nernst effect, by thermohydrody-
namics. The quantum behavior predicted in the present
paper, however, was not reported in either studies.
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Fig. 5. The magnetic-field dependence of the thermal conduc-

tance at T = 1, 5, 10 and 20K for 1T ≤ B ≤ 20T; (a) the raw

data and (b) a scaling plot of GQ/T against 1/B.
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