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Abstract

A statistical theory of plasma turbulence which is composed of multiple-scale fluctuations
is examined. Influences of statistical noise and variance of rapidly-changing variable i
an adiabatic approximation are investigated. It is confirmed that the contributions of noise
and variance remain higher order corrections. Transition rate of the turbulence with

multiple scale lengths is obtained under the refined adiabatic approximation.
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I. Introduction

Recently, statistical theory for turbulent plasmas has shown progress. (See, e.g.,
[1,2] for areview.) In particular, the transition in turbulent states has attracted attentions.
This 1s because the finding of the H-mode [3] has motivated the study of transition in
confined plasmas [4-6]. (Detailed reviews are found in [1, 7, 8].) A statistical theory of
plasma turbulence has been explored, in which the statistical nature of subcritical
excitation has been investigated [9]. The turbulent noise induces the stochastic process to
the transition, therefore the analysis fromi the probabilistic view is needed in addition to
that from the deterministic view. A stochastic equation has been formulated as a
Langevin equation, and statistical analyses [9] together with its solution have been
investigated [10]. The probability density function (PDF) has been also found from the
Fokker-Planck equation, which is a counter-part of the Langevin equation. The ensemble
averages, transition probability and so on have been obtained. An extension of the
analyses to the case where plasma turbulence is composed of multiple fluctuations with
different scale lengths {11, 12] was made. (For instance, the fluctuations in the range of
ion gyroradius p; and those in the range of cotlisionless skin depth & = ¢/, can be
simultaneously excited in plasmas. These two kind of fluctuations with different scale
lengths have nonlinear mutual interactions as is explained in [11].) In this case, statistical
characteristics were examined by use of the adiabatic approximation. The time scale
hierarchy was employed, and the rapidly varying variable was first solved by treating the
slowly-varying element being a constant [13]. Then the most-probable value of the
rapidly-varying element is substituted into the equation of the slowly-changing variable.
In this procedure, the stochastic fluctuations of the rapidly-changing variable are
neglected in calculating the distribution of the slowly-changing variable.

In this paper, the influence of the stochastic fluctuations of rapidly-changing
variable is investigated. This contribution is found to be a higher order correction with
respect to the ordering parameter which is a basis for the time-scale hierarchy. The
statistical results, such as the probability density function of a stationary state or the
transition probability between different states, are obtained for turbulent fluctuations

which have two components with different scales.

II. Basic equations and assumptions

In order to examine the effect of the stochastic noise and the variance of rapidly-
changing variable on the developments of the slowly-varying variables under the adiabatic
approximation, the smallness parameter € is introduced according to the previous
analyses. |

In the preceding articles, the turbulence which is composed of two kinds of
fluctuations has been discussed. We considered the case that the fluctuations are

composed of the semi-micro modes (such as ion temperature gradient mode, being
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denoted by the suffix 1) and micro modes (such as the current-diffusive ballooning mode,

being denoted by the suffix h). Stochastic equations for the fluctuation amplitude <¢; ¢3>

and <¢;¢h> have been discussed based on the hierarchical ordering
e<<1, e=kilk3 (1)

where ¢ is the fluctuating part of electrostatic potential, and k; and kj, are typical values
of wavenumber for semi-micro modes and micro modes, respectively. Variables are
introduced as X = k7D7 2 (6;0;) and ¥ = k2D; 2 (0504) . See [9, 12] for normalization
of variables. This normalization is introduced such that X =1 or ¥ =1 is obtained as a
nonlinear stationary state when each mode is analyzed independently [13]. (Here, D,
and D, are the renormalized transport coefficients by the semi-micro fluctuations and

micro fluctuations, respectively, in the case where they are independently driven without
nonlinear interactions between them.) A set of stochastic equations for X and ¥ was

derived as
EX+AxX=gxwlt). (2a)
ad-tY-l-AyY:gyw(r), (2b)

where W(t ) represents a Gaussian white noise term. The damping terms Ay and Ay

satisfy the relation
Ax~O(y}) and Ay~0(y,).

Here ¥; = le% and Y, = th% are decorrelation rate of semi-micro modes and micro
modes, respectively. In usual circumstances, 2; and D), are of the same order of

magnitude, and the relation

Y1/ v~ Ole) (3a)
or

Y1 <<Yn (3b)

is satisfied with the same hierarchical ordering, € << 1 . This leads to the time scale

hierarchy



| Ax]<<|Ay]. 4)

Explicit formsof Ay , Ay, gx and gy are givenin [11, 12, 13]. For instance, an
analytic estimate for gy and gy has been given in the limit of strong turbulence as

D} ki
k=" CIX"’Cth—ng—zYX (5a)

8y =1, C Y%, (5b)

In these expressions, coefficients C; , Cy; and C;, stand for numerical constants of the
order of unity. Under the normalization in this article, X and ¥ remain to be of the order
unity. The second term in RHS of Eq.(5a) is a higher order correction of the order of
€2 . (In the analysis of [13], an estimate of C 1=C,=1 is employed, and the term of the
order of €2 is not kept.)

In Eq.(2), the terms A x and Ay denote the driving or damping rate for the

evolution of X and ¥ . In a deterministic model, in which noise terms gy and gy are
ignored, the flow vector (aX/at, aY/at) is given by (A xX, A yY) . The solution of

equations

AxX =0 (6a)
and

AyY=0 - (6b)

denotes the stationary state. Equation (6) can have multiple solutions as has been
analyzed in {9-13]. Figure ! illustrates the schematic drawing of conditions A yX =0

(dashed line) and A yY =0 (solid line). In this case, two solutions (named "A" and "B")
are stable, and the intermediate one ("C") is unstable. The partition between states "A"
and "B", and the transition rate between them are analyzed in the presence of the noise

terms.

HI. Statistical results

This set of stochastic equation has been studied by use of an adiabatic
approximation. In this process, Eq.(2b) is solved, treating X as a parameter which is

constant in time. The statistical solution for rapidly-varying element ¥ is obtained in
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terms of the probability density function (PDF) for the equilibrium state as a function of
X as[9]

,
Py(Y e g7 'exp (—_[ 287 Y ) AWY )Y aY’ |, (7

In this integral, X is fixed constant. The statistical average <Y> and the statistical
variance AY are given from the PDF. The most probable value Y*(X ) under fixed value
of X is given the peak of PDF, and is given by the condition

Equation (8) is modified in comparison with Eq.(6), and the second term appear as an
influence of the width of the PDF.

In the first approximation for the slowly-varying function, the rapidly-varying
variable ¥ in Eq.(2a) was replaced by the expected value of ¥ under fixed value of X .

We approximate the expected value of ¥ by Y*(X ) . Then Eq. (2a) was reduced to the

following equation in the slow time-scale as
X+ Ay{X, Vo) X =gy{X, ¥a) (1) ©)

Equation (9) was solved in [13], and the transition between different turbulent states was
studied.

The influences of the statistical noise gy and the variance AY on the response of
X are investigated here. We write

Y=Y.+F (10)
where ¥ is a stochastic variable which changes in the time scale of Ay . One has

d 54vy= (7) 1

¥ rvi=gy-wi), (11)
where

v (Y Ay) atY =Y. and gys = gy(X, ¥a) . (12)

A simple estimate of the variance 1s given as (j"2> = g%,.JZV ,1. e,



(5= (M)l -

=2\ or (13)

Substitution of Eq.(10) into A x and g% give

- My 1[3%Ax)
and
2
gx=gxX, Y*)+3%gxﬁ+%%gx?2+---. (14b)

Since w(t) in Eq.(2a} and that in Eq.(2b) are statistically independent, so that the second
term in RHS of Eq.(14b) vanishes after averaging over ¥ . The noise term g XW(t] n
Eq.(2a) is approximated as

g1 {8x(X v)+ %3—( 2)} W)+ (15)

In the slow time scale, $° in the third term of RHS of Eq.(14a) is replaced by the average
()72) . Substituting Eqs.(14a) and (15) into Eq.(2a), the stochastic equation for the
slowly-varying part is modified as

*Ax ) /.
%X+ AX(X,Y*)+%(WZX)(),2) X=

(2)}“’() (a;ﬁz )Xy+ - (16)

(ot 14 2

The second term in the RHS of Eq.(14a) is placed at the end of the RHS of Eq.(16). As
is discussed in the appendix, the last term in the RHS of Eq.(16) is modelled by an

independent Gaussian white noise term. With this procedure, Eq.(16) is rewritten as

with



- 92 '
Ax=Axx, Y*)+%( a?f}(yz). (18)

and the effective noise amplitude as

2 -2
9? FolY A
g‘;: {gX(X, Y*) +% a}‘?‘; <5;2>> +(a$;x) ( (aY Y)) ng%* . (19)

This expression is derived in the appendix.
Substituting Eq.(13) into Eq.(18), one has the renormalized driving/damping rate
as

-1
~ 2 aY A
AXZAX(X, Y*)-l-%(a AX)( (aY Y)) g%* . (20)

Up to the first order correction of 2% » , the renormalized noise §§ of Eq.(19) is rewritten

as
e =ex(X. Y. + (4, +4,) g}, (21a)
where
1 %, (¥ Ay
A= ex{X. Y] a}fg‘( o ) (21b)

-2

(21c)

Azz(an)Z(a(YA,,)

aY aY

Equations (17), (20} and (21) form the evolution equation of X with the correction of
the statistical variance ¥ . Here the hierarchy between X and ¥ is employed according to
the time scales of Ay and Ay .

Equation (17) is solved, and the PDF of the variable X is derived as

. (22)

Py(X) o< &% 'exp (— f 2 8% AyX dX



(Procedure to obtain the stationary solution of PDF from Langevin equation is explained

in [9].) This integral 1s taken along the path which satisfies Eq. (8). If one writes the
correction by ¥ explicitly, one obtains

X —
32A B(Y A y)
Py(x) < 23! i O %( oY 2X)( o) £ X dX
o Oy ex _— 23
)= 8O gx(X. V.7 +(A, +A,) g @
The adiabatic approximation which neglects ¥ , Eq.(9), gives
[
P (X}ochIexp _ deX (24)
st X : gX(X, Yx)z .

The terms in Eq.(23) which include g% = are found as a new correction in this
article. Comparing Eqs.(23) and (24), one finds that the statistical variance ¥ provides a
higher order correction with respect to the expansion parameter € . In the numerator, the
first order correction O(E) appears. In the denominator of Eq.(23), the second order
corrections with respect to € are included. The A term in the denominator of Eq.(23) 1s
0(82] . or higher, because 3°gx/0Y2 has a coefficient of the order of £2 . (In the case of
Eq.(5a), it vanishes.) The A, termis 0(82) . The simplest result Eq.(24) is valid as the

lowest order estimate. We note that the new correction terms in the denominator can have
2

an influence on the tail of PDF. The term (BA X/aY) X? can have a higher order

dependence on X in comparison with g% . Ifitis so, the tail could be chopped-off

owing to this correction term.
The most probable state for X is given by the peak of the PDF, ﬁS[(X ) CItis

given by the equation

AxX +8,084/0X =0 . o (29)

As is the case of Eq.(8), Eq.(25) includes the correction by the noise term in comparison
with Eq.(6b). | | e

Based on these results one can calculate the transition probability in the turbulence
with multiple scale lengths. Let us consider the case that there are at least three solutions
that satisfy Egs.(25) and (8). Figure 2 illustrates the case that Egs.(25) and (8) have three

~8-



solutions. Two of them (being labeled "A" and "B") are stable, and the intermediate one
is unstable. PDF has two peaks: one is around "A" and the other at "B".

The dominant one, "A" or "B", and the transition rate between these two are
calculated by use of the PDF. A nonlinear potential is introduced as

S(X)=| 283" Axxdx (26)

where the integral is taken along the path Eq.(8) (1. e., the solid line in Fig.2). Using this
potential, the PDF is rewritten as Pst(X ) o< 8y lexp (— S(X ]) , and the transition probability

is deduced as in [9]. The transition rate from the state "A" to "B" is given by

JAAA
rasp= oA Cexp - S(Xc)) @7

and that from "B" to "A" as

AgA
s a= LOBAC exp S{Xg) - S(Xc}) 8)

respectively. (Note that S(X5]=0 holds by definition.) In Eqs.(27) and (28), the time
rates A 5 g ¢ are givenas A, p c=2X Ia./A\XIBXl atX=X,,X=Xp and X =X¢ .

(This partial derivative is taken along the path Eq.(8).) The dominant dependence of the
transition rates comes from the exponential parts in Eq.(28). Equations (27) and (28) are
the extension of the result in [9] to the cases for the turbulence with multiple scale
lengths.

The probability that the state is found in the "A"-state is given as

PA="B—>A/("A—>B+”B—>A)~ (29a)
That for the "B"-state is

PB="A+B/(TA—>B+”BaA)- (29b)
The state "A" is dominant if P4 > 1/2 , and "B" is dominant if Pg> 1/2 | respectively.

The condition P4 = Py is rewritten as 1|, , =y . From Eqs.(27) and (28), this

condition is given as



S(Xg) =1 In (A Ag) . (30)

Apart from a weak logarithmic term, it is approximated as S(X B) =0 . When this

condition is satisfied, the two states appear with the same probability. This condition

dictates the phase limit in the parameter space.

V1. Summary

In this article, the stochastic equations were analyzed for the turbulence which is
composed of two kinds of modes with different scale lengths. The time scale hierarchy
was employed, and the statistical properties were examined. The influence of the
stochastic variance of rapidly-changing variable was investigated in using the adiabatic
approximation. It is confirmed that this contribution remains to be a higher order
correction with respect to the ordering parameter which is a basis for the time-scale
hierarchy. These results show that the adiabatic approximation is valid for the study of
multiple-scale turbulence in plasmas. The statistical results, such as the probability
density function of a stationary state, the transition probability between different states
and the selection rule of a branch, etc., are obtained for turbulent fluctuations which have
two components with different scales. They are the generalization of the cases in

previous analysis {9] where the turbulence is characterized by one scale length.

Appendix: Response to rapidly-changing stochastic variable

The rapidly varying element is expressed as ¥ =Y.+ ¥ , where Y+ is determined
by an average of adiabatic approximation. The stochastic part § may obey the stochastic

equation

9 G4vi=gy w(t)

un Y FTVI=8ys . (Al)
Here v and gy« are determined by useof Y=, e.g., v= 3(Y A y)/aY at Y=Y« The
fluctuating part ¥ is given from Eq.(A1) as

)

F=gy«e V| ds e‘”w(s) (A2}

i

yielding (ﬁz) =g3/2v .

We study the response of slowly-changing variable against the perturbation with
V. The equation



d ~
3?X+AX=ay (A3)

is studied. The condition A <<V holds, representing the time scale hierarchy. This

stochastic equation is solved as

e [ sS85 hni e[ 0 2 o) o

The contribution to the stochastic deviation of X is calculated from Eq.(A4). In the

lowest order with respect to the smallness parameter A/ V ~ O(e}, one has

<X 2> = a2g$./2Av? | That s, in the range of A f ~ 0(1) , X is approximately given as
X(t):e‘mf ds v 1o gys e wls). (A5)

This means that ¥ in the stochastic equation (A3) is modelled by the term & V™ lg y W(I) .

If one studies the equation
g—tX+AXX=ng[t]+a_v . (A6)

with A y <<V , it is modelled by a stochastic equation which has two independent white

noise terms in the RHS. That is, one has

X+ Ay X =gy w) (A7)
with

g =gk +ogy.v?. (A8)
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Fig.1 Schematic drawing for a deterministic view when multiple stationary solutions are allowed.
Conditions (6a) and (6b) are shown by the dashed line and solid line, respectively. Flow vector

(3X/31, awa:) is shown by arrows. "A" and "B indicate stable fixed point.

Fig.2 Schematic drawing for a stochastic model when multiple stationary solutions are altowed.
Conditions (25) and (8) are shown by the dashed line and solid line, respectively. "A" and “B" indicate
peaks of the PDF.



