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Abstract. Tt is demonstrated that the stability of fow n pressure gradient driven modes is improved by introducing
local pressure flattening at low order rational surfaces in LHD (Large Helical Device) with the inward magnetic
axis shift of 25cm. where n is a toroidal mode number.

1. Introduction

The largest stellarator/heliotron device called LHD (Large Helical Device) started physics ex-
periments successfully [1]. The electron and ion temperatures, T, ~ 3.8keV and T, ~ 2.8keV,
were obtained in the low density range, i1, ~ 1.5 x 10"”m 3 [2]. The obtained energy confine-
ment time was about 50% better than the International Stellarator Scaling of energy confinement
[3]. The maximum average beta value, B ~ 2.4%, exceeded 2% already, which was the high-
est beta obtained in stellarator/heliotron devices [4]. Since f =~ 2.4% is not limited by MHD
instabilities and the target beta value of LHD is 5%, a higher power heating is expected in an
optimized magnetic configuration.

In this paper we will discuss effects of local pressure profile flattening on interchange modes
which may affect stability and confinement properties of LHD. For studying MHD stability
in stellarator/heliotron devices, Mercier criterion [3] is valuable. For three-dimensional MHD
equilibria under the assumption of existence of flux surfaces, Mercier criterion is usable for
evaluating the beta limit [6]. Another important ingredient for three-dimensional MHD equi-
librium and stability is the formation of magnetic islands [7}. This problem is related to the
existence of three-dimensional nested flux surfaces [8]. The magnetic islands may be produced
by resonant perturbed magnetic fields which are generated by internal resistive MHD instabil-
ities or external error fields. If the magnetic islands appear at low order rational surfaces, it is
expected that the pressure profile becomes flat in the island regions. It is shown that the MHD
stability based on Mercier criterion changes significantly, although the pressure flattening is
highly localized in the neighborhood of rational surface [9] {10] [11]. For this situation stability
limit of low mode number interchange mode becomes important.

2. Reduced MHD Equations and a Model Pressure Profile with Locally Flat Regions at
Rational Surfaces

For analyzing pressure driven instabilities in stellarator/heliotron devices, we use the ideal re-
duced MHD equations [6] [10] {12], which are written as
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Here ¥, u and P denote the poloidal flux function, the stream function and the plasma pressure,
respectively. An axisymmetric component of the magnetic field is given by B and R and ¢
denote the major radius and the toroidal angle, respectively. The magnetic axis is R = Ry, and
the toroidal field at R = Ry, is B,. Since the free-boundary effect is not significant for the stability
of currentless plasmas, a perfectly conducting wall is usually placed at the plasma boundary
[10]. It 1s noted that the equilibrium state of y is consistent with the rotational transform profile
due to stellarator fields.

For describing the locally fiat pressure profile,
P(p) = C[Fy(p) + Pax(p) + Pres(p) — A] @)

is assumed, where F,(p ) denotes a smooth and standard pressure profile, Py (p) corresponds to
a flattening of pressure profile near the magnetic axis given by

Wa

Pus(p) = [By(0) — Py(p)exp H (2) } , ®

and P,.s(p} plays a role to flatten the pressure at rational surfaces

Pres(p) = 2{{P0(pm) +Pax(pm)] - [PO(}D) +Pax(p)]}

1{p—pn\*
xexp[—i (pwf ) } . )

Here p denotes a square root of normalized toroidal flux. In the expression of (7), A and C
are numerical factors to fix pressures at both the magnetic axis and the plasma surface. In the
expression of (8), w, denotes a width of a region to make the pressure profile flat near the
magnetic axis. Also in the expression of (9), p,, denotes a position of m-th rational surface and
wm denotes a width of a region to make the pressure profile flat at the rational surface p = Prm-

In order to calculate fixed boundary MHD equilibria for the LHD configuration with the pres-
sure shown by the expression (7), VMEC code was applied. In the following calculations the
LHD contiguration with the inward magnetic axis shift of 25cm is picked up. Ideal MHD stabil-
ity against pressure driven interchange modes was studied with the RESORM code [13], which
solves linearlized equations of egs.(1) - (3) as an initial value problem.

3. Stabilization of Low-n Interchange Modes with Flat Pressure Regions at Rational Sur-
faces in Toroidal Plasmas

For the pressure profile given by Eq.(7) in the LHD model configuration, global pressure driven
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modes with 7 = 1.2.3 are examined with the RESORM code [13}, where n is a toroidal mode
number.

(I) n = 1 mode

The smooth pressure profile Py(p) and the rotational transform profile 1(p) are plotted in Fig.1.
The rational surfaces for the n = 1 mode. t = 1/1, and ¢ = 1/2 are shown with the dotted lines
in Fig.1. Here the central beta value is assumed 2%. The unstable n = | mode exists with the
growth rate of 4.846 x 102, which is destabilized at the 1t = 1/2 surface. Here the growth
rate is normalized by the poloidal Alfvén time. When the flat pressure region with the width w
is increased at the 1 = 1/2 surface, the growth rate decreases. The marginally stable pressure
profile against the n = | with w = 0.045 is shown in Fig.2.

(II) n = 2 mode

Here the same pressure and rotational transform profiles as shown in Fig.1 are used for the
stability analysis of the n = 2 mode. However, the relevant rational surfaces increases; 1 =
2/2.1=2/3. 1=2/4and 1 = 2/5. The RESORM code shows that the n =2 mode is destabi-
lized at the two rational surfaces, 1 = 2/4 and t = 2/5. Here the growth rate is y=7.187 x 1072
at B(0) = 2%. Thus it is required to introduce two locally flat pressure regions with different
widths at ¢ = 2/4 and 1 = 2/5 for stabilizing the n = 2 mode. When w =0.02 at 1 =2/4 and
w = 0.04 at 1 = 2/5, the instability is suppressed completely and the obtained pressure profile
1s shown is Fig.3.

(II1) n — 3 mode

For the LHD configuration with the pressure and rotational transform profiles shown in Fig.1,
there are six rational surfaces; 1 = 3/3, 3/4, 3/5. 3/6. 3/7. 3/8. For the case of Fig.1 the
RESORM code gives the growth rate ¥ = 8.233 x 102 at $(0) = 2%, and the unstable mode
is localized at the central region with a ballooning structure. These are typical characteristics
of the toroidal non-resonant pressure-driven mode [14]. In order to suppress this non-resonant
mode, the central pressure profile is flattened first with wg, = 0.6 in Eq.(8). Then the growth rate
decreases to ¥y = 6.975 x 102, and the unstable mode has a typical interchange mode structure
destabilized at 1 = 3/4, 3/5, 3/6 and 3/7. For suppressing the pressure driven interchange
mode with n = 3 completely, flat pressure regions are generated at the four rational surfaces
withw=0.03at1=3/7, w=0.03at1 =3/6, w=002at1=3/5and w=0.02at1 =3/4.
The obtained pressure profile with $(0) = 2% is shown in Fig.4. The average beta value is
changed from B = 0.632% (see Fig.1) 10 B = 1% (see Fig.4).

It was demonstrated that the pressure driven modes with n =1, n = 2 and n = 3 can be sta-
bilized by generating the locally flat pressure regions at the relevant rational surfaces sep-
arately. Furthermore it is confirmed that the n = 1, 2, 3 modes become stable simultane-
ously when the pressure profile is described with w, = 0.6 and locally fiat regions with w =
0.025, 0.03, 0.065, 0.03, 0.025, 0.02at 1t =0.4. 3/7, 0.5, 0.6, 2/3, 0.75, respectively.

4. Concluding Remarks

It is expected that the locally flat pressure regions are produced by the non-linear evolution of
resistive interchange modes which become unstable for beta values less than the Mercier timit.
The other possibility to produce the locally flat pressure regions is external application of reso-
nant helical magnetic fields. It has been demonstrated that the pressure driven instabilities with
low toroidal mode numbers are stabilized by modifying the pressure profile to make the locally



flat pressure regions in the LHD model configuration. It is noted that large pressure gradients
near the magnetic axis destabilize the non-resonant modes with medium toroidal mode numbers
such as n = 3 or 4. Therefore, in order to increase the ideal beta limit, broad pressure profiles
with several locally flat pressure regions at dominant rational surfaces may be appropriate in
LHD.

There are some indications that the experimental beta values exceed the Mercier limit, when
smooth and monotonic pressure profiles are assumed in CHS [15] [16] and Heliotron E {17].
Formation of the above mentioned locally flattened pressure profiles at low order rational sur-
faces may explain the discrepancy. The important assumption is that the resistive interchange
instabilities unstable in the magnetic hill region are responsible for generating such profiles. The
other possibility to explain the discrepancy is that high-n pressure driven modes do not play a
role due to the finite Larmor radius stabilization {6). It is noted that the LHD high beta plasma
already obtained f =~ 2.4%, which seems to exceed the Mercier limit. Future experiments for
the LHI high beta plasmas will be expected for checking of our conjecture.
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FIG.1. An assumed pressure profile and a
rotational transform profile in the LHD
configuration with the inward magnetic axis shift of
25cm obtained by VMEC code[18]. Dotted lines
showt = 1/1 and v = 1/2, respectively. The
central beta value is B{0) = 2% and the average
beta value is 8 = 0.632%. The radius p, denotes a
square root of normalized poloidal flux, which is
also used in FIG.2 - FIG.4.
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FIG.3. A marginally stable pressure profile against
the n = 2 pressure driven mode with the flat
pressure regions given byw =0.04 az1 =2/5 and
w=0.02 at t = 2/4. The rotational transform
profile obtained by VMEC code, and rational
surfaces with 1 = 2/2, 2/3, 2/4, 2/5 are shown.
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FIG.2. A marginally stable pressure profile against
the n = | pressure driven mode with the width of
flat pressure region w = 0.045. The rotational
transform profile obtained by VMEC code, and
rational surfaces with 1 =1/1 and 1 = 1/2 are also
shown,
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FIG.4. A marginally stable pressure profile against
the n = 3 pressure driven mode with the fiat
pressure regions given by w =0.03 at

1=3/7, w=003art=3/6, w=0.02ar1=3/5
and w = 0.02 at t = 3/4. The rowtional transform
profile obtained by VMEC code, and rational
surfaces with 1 =3/3, 3/4, 3/5,3/6, 3/7, 3/8
are shown.
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