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Abstract

Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are
overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode,
effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused.
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1 Introduction

In the magnetic confinement of the fusion plasma,
the most successful experimental data have been ob-
tained in the large tokamaks. Particularly, in the
tokamaks such as the JET{1] and the TFTR[2], DT
experiments were carried out and the essential data
of burning plasma were obtained which will be in-
evitable in the design of the devices of the next step
such as ITER[3}]. In order to confine high temper-
ature plasma in toroidal systems, nested magnetic
surfaces are necessary corresponding to the existence
of magnetohydrodynamic (MHD) equilibrium. A
large toroidal plasma current is driven to generate
a poloidal magnetic field to construct the magnetic
surfaces in the tokamaks. However, existence of such
a plasma current in the tokamaks potentially has a
possibility of the disruptive instability, which releases
almost all energy in a short time on the order of
0.1msec. Another difficulty concerning with the cur-
rent is that a non-inductive current drive is required
to realize a continuous operation of tokamaks.

From the point of the continuous operation with-
out the disruption, the stellarator configuration is one
of the alternative promising approaches. In this re-
view, the term of ‘stellarator’ is used for every con-

figuration in which the nested magnetic surfaces and
the rotational transform are produced by external
coil-currents. That is, in the stellarators the global
plasma current is not necessary in the plasma con-
finement. The heliotron configuration is one of the
stellarator concepts which is characterized by the con-
tinuous helical windings. The original concept of the
heliotron was invented by Uo[4]. He proposed a so-
called poloidal heliotron at first, and later, modified
his idea to a heliotron with continuous helical wind-
ings. The main difference from the classical stellara-
tor is that the currents in the helical windings flow
in the same direction. Therefore, the structure of the
heliotron device is simple compared with the clas-
sical stellarators because the number of the helical
windings is half of that of the corresponding classical
stellarator and the toroidal fleld coils are not needed.
Instead, vertical field coils are necessary in generation
of the nested surfaces; however, they can be used for
the extension of the flexibility of the configuration.

The feasibility to the confinement of the fusion
plasma was firstly shown in Heliotron D device
in Plasma Physics Laboratory, Kyoto University[5]
which has two helical windings (£ = 2 ). After that,
helictron devices with £ = 2 were constructed in sev-



eral laboratories in the world. The heliotron project
in Kyoto University was succeeded by the Heliotron
DR (H-DR)[6] and the Heliotron E (H-E)[7] devices.
The ATF[8], the URAGAN-2M[9] and the CHS[10]
devices were constructed, in Oak Ridge National Lab-
oratory, Kharkov institute of Physics and Technology
and Institute Plasma Physics Nagoya Unversity, re-
spectively. The coil parameters of these devices are
summarized in Teble 1. In these devices, the plasma

Table.l Coil parameters of recent heliotron devices.

HDR | H-E | ATF | CHS | LHD
Ro(m) ] 09 | 22 ! 21 | 1 | 39
ac(m) | 0.135 | 0.293 [ 0.46 | 0.313 | 0.975
Np 15 | 19 | 12 |8 10
Mp 1 3 3 4 3

Ry:Major radius of helical windings, a.:Minor radius of
helical windings, N:Number of field period,
Mp:Number of pairs of poloidal field coil

with a few keV of ion temperature, the density in
the order of 10?m~> and the average beta value of
2% were achieved[11]. Thus, the heliotron configura-
tion is considered as one of the most hopeful alterna-
tive configurations in the magnetic confinement of fu-
sion plasmas. After these successful experiments, the
Large Helical Device (LHD) was constructed in the
National Institute for Fusion Science (NIFS)[12, 13],
and the experiment started in 1998[14]. The LHD
is the largest heliotron device with superconducting
coils for the steady state operation. Many theoreti-
cal analyses in heliotron configurations has been pro-
gressed through the design and the construction of
the LHD intensively. Hence, some of the topics in
this review are concerned with the research of the
LHD configuration.

In the many operations in the above heliotron de-
vices, global MHD fluctuations which almost Lmits
the achievable beta value were observed. Particularly,
in the Heliotron E high-beta experiments, sawtooth-
like fuctuations and internal distruptions in the soft
X-ray measurement which had coincidence with mag-
netic fluctuations{15]. At the internal disruption, 20
~ 30% of plasma energy is lost by the enhancement
of the energy and particle transport. Thus, it has
been crucial to understand the mechanism of such
instabilities theoretically and to know what kind of
configuration is favorable for the high performance

plasmas in the heliotren configurations.

Since there is no geometrical symmetry in the he-
liotron configuration, the theoretical analysis has to
be essentially three-dimensional. However, it is not
eagy to treat the three-dimensional plasma as it is.
Hemnce, various approximations have been considered
in the study of MHD equilibria and stability. The first
successful approximation was the stellarator expan-
sion method developed by Greene and Johason{186].
This approach is based on the so-called stellarator
ordering and the averaging the helical equilibrium
quantities in the toroidal direction. The stellarator
ordering consists of the following two essential ideas
with respect to a small parameter ¢ = ¢/R << 1,
where ¢ and R are the minor and the major radii
of the plasma, respectively. One is that the ratio of
the helical component of the magnetic field to the
uniform toroidal component is in the order of /2,
and the other is that the ratio of the plasma pres-
sure to the magnetic pressure, which is called the
beta value, is in the order of . Applying the stel-
larator ordering to the MHD equilibrium equations,
a two-dimensional Grad-Shafranov type equation can
be derived for heliotron plasmas. The stellarator or-
dering was also applied to the energy principle[17] for
the linear ideal stability of the equilibrium obtained
from the Grad-Shafranov type equation[18]. In the
stability analysis with this technique, the stability is
examined as a two-dimensional eigenvalue problem.

On the other hand, the initial value approach based
on the reduced MHD equations has been successfully
developed for the stability analysis in the heliotron
configuration. This approach was originally devel-
oped for the stability of the tockamak plasma. By us-
ing the high-beta ordering of 8 ~ ¢, the incompress-
ible MHD equations for tokamaks can be reduced to
the three-field equations for poloidal magnetic flux,
stream function and plasma pressure. Strauss[19] em-
ployed the stellarator ordering in the reduction pro-
cess of the MHD equations and applied the averaging
method for the helical variations to obtain the three-
field equations for stellarators. By dropping both the
time derivative and the stream function from these
reduced MHD equations, the same Grad-Shafranov
type equation as derived by Greene and Johmson
can be reproduced for the static equilibrium. The
quadratic form for the linear ideal perfurbation de-
rived from the reduced equations is also similar to the
energy principle in the stellarator expansion method
in principle. Therefore, the reduced equations derived



by Strauss are equivalent to the stellarator expansion
method in the static equilibrium and the linear 1deal
stability.

It is noted that both approaches of the steliara-
tor expansion method and the reduced MHD equa-
tions can examine the three-dimensional equilibrium
and stability by means of the two-dimensicnal tech-
nigue. The stability analysis using the stellara-
tor expansion method based on the energy princi-
ple has an advantage that the vacuum contribution
for the external modes can be included straightfor-
ward. On the conirary, the approach utilizing the re-
duced equations can treat the non-ideal effect such
as resistivity, and it is easy to extend the numer-
tcal scheme to the nonlinear analysis because the
equations are usually solved as an initial value prob-
iem. Thus, several stability code has been devel-
oped based on both methods[20, 21, 22, 23]. Further-
more, various approaches has been proposed to in-
clude higher order effects, particularly, the toroidicity
effects[24, 25, 26, 27], because the classical stellarator
ordering cannot give a good approximation for recent
medium or small aspect ratio heliotrons.

In order to study the stability with these two-
dimensional scheme, the equilibrium to be examined
have to be expressed in the two-dimensional form con-
sistent with the ordering in the stability scheme. Pre-
viously, the Grad-Shafranov type equation was solved
numerically to obtain the two-dimensional expression
of the equilibrium. On the other hand, the effort for
the numerical scheme to obtain the three-dimensional
equilibrium without any ordering has been also de-
veloped. Firstly, the BETA codef28, 29] was suc-
ceeded in solving the three-dimensional equilibrium
with Lagrangian coordinates. Since the code em-
ployed the finite difference method for the derivatives
in the poloidal and the torecidal coordinates as well as
in the radial coordinate, many grids were needed in
every direction to obtain a good numerical accuracy.
After that, Hirshman et al. developed the VMEC
code[30, 31] with the spectral method in beth poloidal
and toroidal directions in a Lagrangian coordinates.
This code is very useful in the point of the computer
resource, and therefore, is almost the standard code
in the three-dimensional MHD equilibrium calcula-
tion these days.

Since a three-dimensional equilibrium can be ob-
tained numerically by utilizing the VMEC code, nu-
merical schemes to examine the VMEC results with
two-dimensional approach have been developed(32,

33, 34, 35). In these schemes, interface codes to gener-
ate two-dimensional equilibrium quantities from the
three-dimensional solution are provided. The results
of several benchmark test of the numerical stability
codes in this type are summarized in Ref.[36]. Good
agreements among them are shown. Recently, sta-
bility codes with a three-dimensional technique are
also developed[37, 38]. These codes are based on the
energy principle and do not employ any ordering or
averaging method. Hence, they are very useful in the
stability analysis where the three-dimensional effect
1s essential.

The VMEC code is based on the assumption of the
existence of nested surfaces in the equilibrium. How-
ever, in the three-dimensional configurations, there
is no mathematical proof for the assumption, and
magnetic islands and stochastic region can exist in
the plasma confinement region. In order to study
the effects of the islands and the stochastic region to
the MHD equilibrium, three-dimensional equilibrium
codes employing the Eulerian coordinates has been
developed. Recently, two codes has been successfully
developed independently to study the desiruction of
the magnetic surfaces[39, 40]. They give interesting
results concerning with destruction of the nested suz-
faces due to the finite beta effects.

In this review paper, we overview recent progress
in the study of the MHD equilibrium and stability in
the heliotron configurations which are obtained with
the approaches mentioned above. The advance of
the MHD study in this decade is owing to the fact
that a three-dimensional equilibrium can be calcu-
lated easily. Thus, the properties and the stability
of the three-dimensional equilibrium are mainly fo-
cused here. This paper is composed as follows. In
Section 2, the numerical approaches often used in
the equilibrium and the stability analysis for the he-
liotron plasmas are briefly explained. In Section 3,
recent topics studied with the approaches explained
in Section 2 are discussed. The properties of the
three-dimensional equilibrium analysis are shown in
Sec.3.1 firstly. After that the stability of the equi-
librium against the interchange mode is discussed in
Sec.3.2, as the mode is the most crucial instability in
the heliotron plasma and therefore, examined widely.
Because a net toroidal current can flow even in the he-
liotron plasma, the investigation of the effects of the
current are reviewed in Sec.3.4. The influence on the
interchange mode and the current driven mode are
presented. The bootstrap current in the heliotron



plasma is discussed as one of the net current. Re-
cently, it is found that the ballooning meode is also
destabilized in the heliotron plasmas. The mecha-
nism of the mode is discussed and the properties are
presented in Sec.3.5. The comparison between the
theoretical and the experimental results are shown in
Section 4 in several devices to show how well the the-
oretical approach can explain the experimental data.
Summary is given in Section 5.

2 Numerical Scheme of the
MHD Analysis in Heliotron
Configuration

2.1  Equilibrium calculation
2.1.1 VMEC code

The existence of the three-dimensional MHD equi-
librium with nested surfaces has not been proved
mathematically. If the region of the magnetic is-
land or the stochastic region is narrow enough, how-
ever, the assumption of the existence of the 3D equi-
librium with the nested surfaces would be approxi-
mately valid. Kruskal and Kulsrud[41] showed that
the first variation of the internal energy Wp given by

Wp = fP (% + 1_‘?“1") av (2.1)

gives the equilibrium equation,
VP=Jx B, (2.2)

where B, J and P denote the magnetic field, the the
current density and the plasma pressure, respectively.
to and ' are the permeability in vacuum and the
specific heat of the plasma, respectively, and [ dV
means the volume integral in the plasma region.
According to their theorem, the equilibrium prob-
lern can be written in the Lagrangian coordinates. In
this case, the radial coordinate is characterized by
the flux surfaces at the finite beta equilibrium, and
the equilibrium is determined by solving the equa-
tion for the spatial position of each flux surface. The
numerical scheme employing this idea is called an in-
verse solver. The most convenient inverse solver is the
VMEC code developed by Hirshman et al.[30, 31].
In the VMEC code, the cylindrical coordinates of
the flux surface (R, ¢, Z) are solved as the functions

of flux coordinates (s,6, (), where s denotes the nor-
malized toroidal magnetic flux and ¢ and ¢ are the
poloidal and the toroidal angles, respectively. The
toroidal angle ( is taken as the same as ¢. The
poloidal angle @ is given by

8* =6+ A(s,8,(), (2.3)

where 8" is the poloidal angle with which the mag-
netic field line is expressed as a straight line. Here, A
is a periodic function of § and ¢, which is introduced
to give a freedom of the poloidal angle. The spectral
method is employed in the VMEC code so that the
cylindrical variables are expressed as

R(5,8,{}) = >  Run(s)cos(mf+nl) (2.4)
2(s,0,() = Y Zma(s)sin(m8+nl) (2.5)

A(s,6,¢) > Ama(s)sin{mf +n¢). (2.6)

The solution of the equilibrium is given by the Fourier
components, Bn,, Zn, and Ag,.

The first variation of Wp with respect to the
Fourier components is written as

dWP denn dzmn
T _L,;; (FRmnT']'FZmnT

dhnn

+Fymn at )dV. (2.7)
Here the variation is represented by the virtual time
derivative which corresponds to the numerical it-
eration. The equilibrium can be obtained when
dWp/dt =0 which is given by the vanishment of the
residual forces, Fi,,, =0 (1 = R, Z, ).

In the numerical iteration scheme, the meonotonous
convergence to the equilibrium should be guaranteed.
This condition is achieved by taking the descent path
of the iteration as

% = —Famn, % = —Fzrm; P _ ~Frn-
(2.8)
In the VMEC code, the second order Richardson
method is employed to accelerate the convergence.
1t is noted that the three equations of the residual
force for R, Z and X are dependent. It is one of
the most remarkable points in the VMEC code how
to avoid the dependence of the equations. As the
freedom of the poloidal angle is taken into account
by introducing A in the formulation, a constraint to



ensure the rapid convergence of the Fourier series can
be imposed to obtain independent equations{42]. If
we introduce a function of the power spectrum of R
and Z defined by

+1
Em)l mP Sm

M= (p>1), (29

where

Sm = Z(R?'nn + ann)!

n

(2.10)

the minimization of M leads to the condensation of
the K and Z spectra toward low poloidal mode num-
bers. Thus, the independent Euler equations under
the constraint of the rapid convergence of poloidal
mode number can be obtained by the minimization
of Wp + aM instead of Wp with respect to B, Z and
A, where « 15 a normalization parameter concerning
with the residual forces.

The equilibrium under the fixed boundary condi-
tion can be solved by means of above scheme with the
information of the boundary shape and the profiles of
the pressure ( or the mass ) and the net toroidal cur-
rent ( or the rotational transform ). On the contrary,
inn the case of the free boundary condition, the mag-
netic field in the vacuum region has to be solved as
well as that in the plasma region. In this case, the
variation of energy functional including the part of
vacuum region defined by

WZWP—WV
B? P Vv |
-L(%juﬁl)dv—]v 54V (211)

is utilized, where ¢y is the vacuum magnetic potential
and fi, dV means the volume integral in the vacuum
region. The Euler equation in the plasma region cor-
responds to the force balance equation again. The
variation with respect to ¢y in the vacuum region
gives the Laplace’s equation,

Vigy =0 (2.12)
and the pressure balance equation at the plasma vac-
uum interface
BZ v 2
L po Vvl

— 4+ P = . 2.13
200 21 (2.18)

The Green’s function is employed in solving the
Laplace’s equation in the VMEC code.

2.1.2 HINT and PIES codes

Recently, two equilibrium codes which can solve the
equilibria including magnetic islands or stochastic re-
gion in the plasma column without any assumption
of the existence of the nested surfaces have been suc-
cessfully developed. One is the HINT code[39} and
the other is the PIES code[40].

In the HINT code, a special type of Euleriar coordi-
nates is employed in order to save the memory of the
computation. In the coordinates, the poloidal cross
section on which the rectangular grids are spanned
rotates in the toroidal direction with the same pitch
as that of the external coil. The HINT code solves
the three-dimensional equilibrium by means of the
time-dependent relaxation method on the coordi-
nates. This method is composed of the two steps.
In the first step, the condition of

B-VP=1( (2.14)
is achieved by the time evolution of the equation set
for the artificial paralle! sound wave,

opP
W =B- V'Us (215)
dv,
—. =B-VP. (2.16)

The magnetic field B is fixed during the first step.
The uniform pressure along the field line is obtained
by setting the artificial kinetic energy K, = fv2dV to
zero when K, reaches a maximum wvalue in the time
evolution. This procedure is repeated several times
in the first step. The second step is another time
evolution of the following equations,

SpmV _ 1, 2
=V [PI— (BB— 5B 1)] LU VRV
@2.17)
OB
“B?ZVX(VXB—T](;J) (218)
J=VxB, (2.19)

where p,, is the mass density and I denotes a unit
dyadic. v, and 7, are the artificial viscosity and re-
sistivity, respectively. In this step, the pressure P is
fixed. Thus, the magnetic field is obtained which sat-
isfies J x B = VP for a given pressure profiles when
the artificial velocity V' is relaxed to be zero. By
iterating these steps, a consistent three-dimensional
equilibrium can be solved.



In the PIES code, the procedure to obtain a three-
dimensional equilibrium is composed of the following
four steps. At first, the pressure P is chosen so that
the pressure is constant along the given field line to
satisfy the condition,

B-VP=0. (2.20)

In the second step, the current component perpen-
dicular to the magnetic field J, is obtained by

BxVP
T B

In the next step, the Pfirsch-Schliiter current is ob-
tained by solving the magnetic differential equation

J-B
BV( B2 )Z“V'J_L)

J, (2.21)

(2.22)

which is given by the divergence free condition for J.
At last, the magnetic field is updated by the solution
of the Ampére’s law

VxB=J. (2.23)

By iterating above procedure, the consistent so-
lution for three-dimensional equilibrium can be ob-
tained without any assumption of the nested surfaces.
As the equilibrium may involve the magnetic islands
and the stochastic region, the field lines are traced
af each iteration to construct a quasi-magnetic co-
ordinates (¢,60,¢) with which the magnetic field is
expressed as

B=VyxV8+:Vx Vo +b, (2.24)

where ¢ denotes the rotational transform. Here, b is
introduced in order to avoid the singularity in the
magnetic differential equation. Thus, it is very small
in the region of the nested surfaces. In the region
with the magnetic islands and the stochastic regien,
the quasi-magnetic coordinates are extrapolated so as
to connect the coordinates in the region of the nested
surfaces.

2.1.3 Two-dimensional approach

The numerical schemes which can examine the
three-dimensional equilibrium with two dimensional
technique have been developed extemsively. Espe-
cially, the KSTEP , the TWIST, the RESORM and

the CHAFAR codes are developed to study the lin-
ear stability of the equilibrium calculated with the
VMEC code. In the two dimensional approach of
the stability analysis, there are two kinds of numeri-
cal code. One is the group which utilizes the energy
principle and the other one utilizes the reduced MHD
equations. The growth rate of the mode is solved as
an eigenvalue problem in the former case and as an
initial value problem in the latter case. The KSTEP
and the TWIST codes belongs to the former category
and the RESORM and the CHAFAR. codes to the lat-
ter one. Here we focus on the KSTEP code and the
RESORM code because thy are used frequently for
the stability of heliotron plasmas.

The most representative code in the former group
is the KSTEP code[32]. The code was originally de-
veloped, which is called STEP[22], by applying the
stellarator expansion method to the PEST code[43]
which was used in the tokamak stability analysis. Af-
ter that it has been modified so as to include higher
order correction in the inverse aspect ratio to relax
the limitation of the large aspect ratio, and the inter-
face code as the connection to the VMEC code has
been provided[27]. In this code, the displacement vec-
tor perpendicular to the equilibrium field is given by

2
£, = %VC x V¥,
where R and ® denote the major radius and the
stream function, respectively. The KSTEP code
solves the eigenvalue and the eigenfunction of the La-
grangian given by

(2.25)

L= w? / d7ppm
[ {iQLF B, ve
+€, - VPE, -V} (2.26)

with
Q| =V{xV[(ReBV{+V({x V¥,) -V®], (2.27)
where ¢ denotes the toroidal angle. The subscript 0
means the value at the magnetic axis and ¥, denotes

the equilibrium poloidal flux. The averaged magnetic
curvature, {2, is given by

N g8 RN'( |B-Bp
9_5;[] dc(g) (HMBE“_)’ (2.28)

where B denotes the axisymmetric part of the mag-
netic field. The first and the second terms in the



integrand correspond to the toroidai and the helical
components of the field line curvature, respectively.
The parallel current in eq.(2.26) is given by

J-B _ dP

= 2.2
B? dv,, (2:29)

Q4+ G(Y.,)

in the ordering. G is a flux function determined
by the condition for the net toroidal current in
the equilibrium. In the free boundary case, the
vacuum integral term is added to the Lagrangian,
which is represented by the Green’s function. These
two-dimensional equilibrium quantities are calculated
from the three-dimensional VMEC solution.

The reduced MHD equations for the stellarators
were originally derived by Strauss[19]. He utilized an
averaging method based on the stellarator ordering
to derive the equations for the poloidal magnetic flux
¥, the stream function ¢ and the plasma pressure P.
Ichiguchi et al.[26] derived the modified three field
equations by including the higher order corrections
in the toroidicity which is similar ones employed in
the KSTEP code, given by

allj R z 2
_ (R ¥ 2.30
- (Ro) B -V&4+19ViV¥, ( )
2
pm%g =-B-VVi¥+RVAxVP-V( (2.31)
and dP
c —0. (2.32)

The magnetic differential operator and the convective
time derivative are written as

_fB 9 _ :
B.V= B o VI xV(-V (2.33)
and
d_ 8 R\’
E=§+vi-vi, v, = (E) VexV(, (2.34)

respectively, and V| = V — V{(8/3(). The average
curvature {2 is also given by (2.28). The equations
(2.30), (2.31) and (2.32) correspond to the Ohm’s
law, the vorticity equation and the equation of state.
This scheme has an advantage that it is easy to in-
ciude the resistivity by taking nonzero 5. They de-
veloped the RESORM code[26, 33] which solves the
linearized version of these three field equations as an
initial value problem. As the equations of (2.30)-
(2.32) are nonlinear equation, the numerical scheme

can be extended to the nonlinear version without any
changes of the basic equations.

Both in the KSTEP and the RESORM codes, the
Fourier expansion is employed in the poloidal and
the toroidal direction. As the equilibrium quantities
treated in the codes is averaged in the toroidal direc-
tion, the toreidal mode number of the perturbation
can be specified in the stability calculation, while the
poloidal mode coupling between the perturbation and
the equilibrium quantities is incorporated.

2.1.4 Three-dimensional stability approach

As the development of the computer resources, the
numerical codes analyzing the stability of the three-
dimensional equilibria without any ordering or any
averaging methods have been developed. The CAS3D
and the TERPSICHORE codes are used in the sta-
bility analysis of the heliotron equilibria calculated
by the VMEC code

The CAS3D[37, 44] code examines the ideal sta-
bility by solving an eigenvalue problem based on the
energy principle. The Lagrangian for the displace-
ment vector £ is given by

L=\Wg-Wp (2.35)
with

1
Wi =3 f dromlEl? (2.36)

We =3 [dr [ICP ~ A€ V9P +7P(V - €]

(2.37)

C=Vx(£x B)+%£-Vs (2.38)
(I xVs)-(B-V)Vs

A=2 e (2.39)

In the descritization, the hybrid finite element is
employed in the radial direction and the Fourier se-
ries are used in both the poloidal and toroidal angles.
Since the three-dimensional equilibrium is used as it
is, the mode coupling not only in the poloidal direc-
tion but also in the toroidal direction are taken into
account. In this case, the perturbation space is di-
vided into ‘mode families’. Asthe Lagrangian has the
quadratic form in the perturbation, only the combi-
nation of the Fourter modes of the perturbation with
the toroidal mode numbers n,, and ng satisfying the
relation with an integer &,

np1 :I: np2 = ]‘KZ.Z\T-J_W.J (2.40)



gives the non-zero contribution to the Lagrangian,
where Ny means the number of the field period of
the equilibrium. Therefore, the Fourier modes of the
perturbation is separated into 1+ Nyp/2 mode families
and the modes in the different families are indepen-
dent.

In the previous version of the CAS3D code the in-
compressibility was assumed, however, the compress-
ibility is appropriately treated in the recent version
and the kinetic energy is treated so as to have a phys-
ical meaning[45].

The TERPSICHORE code[38, 46] also solves the
eigenvalue problem based on the energy principle. In-
spite that the TERPSICORE was developed indepen-
dently with the CAS3D code, these codes are fairly
similar in the formulation and the numerical scheme.
The biggest difference between them would be the
treatments of the vacuum region in the free bound-
ary calculation. The Green’s function is utilized in
the CAS3D code, while the technique of the plasma
with infinite resistivity is employed in the TERPSI-
CHORE code.

3 Topics on MHD Studies in
Heliotron Configuration

3.1 Three-dimensional Equilibrium
Study

3.1.1 Boundary Condition in Equilibrium
Study with the VMEC code

MHD equilibrium with the nested surfaces can
be determined in principle with the boundary con-
dition which gives the position and the shape of
the outermost surface, the pressure profile and the
profile of the net toroidal current or the rotational
transform. Previously, in the heliotron configuration
most of the equlibrium caluculations with the VMEC
code[30, 31], were carried out under the fixed bound-
ary condition because of the convenience of the calcu-
lation. However, it can be easily imagined the plasma
column would move outward in the torus because of
the diamagnetic effect as the beta value is increased.
Hence, it is interesting to examine the difference of
the MHD equilibrium between fixed boundary and
free boundary conditions.

In the free-boundary calculation with the VMEC
code, a constraint to determine the outermost sur-
face is necessary. There is a stochastic region out-
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Fig.3.1.1 Flux surfaccs for LHD cquilibma in the planc of the
horizontal elfipse for (a) fixed boundary, {b} free-shifted and
{c) vertical-field control equilibria. [47]

side the outermost surface in the heliotron configu-
ration. Ichiguchi et al.[47] considered that the posi-
tion of right-hand edge of the horizontal cross sectien
would be fixed at that in the vacuum configuration by
the destruction of the flux surface due to the stochas-
ticity of the field line when the plasma would move
outward, that is, the stochastic region is assumed to
play a role of a virtual limiter. Thus, they calculated
the free-boundary LHD equilibria under the follow-
ing two kinds of the constraint. One is the constraint
that the plasma can be shifted outward in the torus
freely and the other is that the additional vertical
magnetic field is adjusted so that the position of the
edge should be fixed with a feedback confrol.

Figure 3.1.1 shows the flux surfaces of the LHD
free-bounaday equilibria with the pressure profile of
P(s) = Py(1 — s)? under the currentless or the



no net toroidal current condition in the above con-
straints, which are compared with those under the
fixed boundary condition. In the free-shifted equilib-
ria, the volume decreases as the beta value increases,
because the nested flux surfaces are destroyed at the
outer edge by the stochastic region. On the other
hand, the equilibria controlled with the vertical field
have almost the same structure of the flux surface as
the fixed boundary equilibria.
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Fig.3.1.2 Rotational transform for (a) fixed, (b) free-shifted
and (c) vertical-field control equilibria. [47]

Figure 3.1.2 shows the profiles of the rotational
transform of the equilibria at several beta values for
the fixed boundary, the free-shifted and the vertical-
field control cases. As the beta value increases, the
rotational transform in the fixed boundary equilib-
rium increases at the magnetic axis and decreases at
the middle region so that the minimum value appears
in the profile. Because of the change of the profile, the

magnetic shear is enhanced in the peripheral region.
This change in the profile 1s due to the deformation
of the flux surfaces and is a general property of the
currentless heliotron equlibrium. In the free-shifted
case, this tendency is strongly enhanced and the value
at the edge decreases owing to the reduction of the
volume. In the vertical-field control case, the profile
is very close to that in the fixed boundary case.
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Fig.3.1.3 Magpetic well depth for (a) fixed, (b} free-shifted
and (c) vertical-field control equilibria. [47]

Figure 3.1.3 shows the profile of the magnetic well
depth defined by

V'(0) - V'(s)

Well depth =
o Vi)

(3.1)

where V{s) denotes the volume bounded by the flux
surface s. Therefore, in Fig.3.1.3, the region with
the positive gradient of the curve corresponding to
V"(s) < 0 shows the magnetic well region. In the



vacuum case, the magnetic hill is spread in the whole
region, while the magnetic well 1s generated from the
vicinity of the magnetic axis by the Shafranov shift as
the beta value increases. The magnetic well region is
wider in the free-shifted case than the fixed boundary
case at the same beta value because the peripheral
region with the magnetic hill is removed. The well
depth in the vertical-field control case is also very
simnilar to that in the fixed boundary case.

In the currentless equilibria, the pressure driven
mode is the dominant mode, and the interchange
mode is usually the most unstable in the heliotron
configuration because there exists a magnetic hill
region. It is very useful to evaiuate the Mercier
criterionf48, 49, 50} to examine the stability. The
Mercier criterion is a stability criterion against the
ideal interchange mode localized around the rational
surface, which is given by

Dy=—(Ds+Dsp+ Dw+ Dgc}f® <0 (3.2)
for the stability, where
D 0'2 as
s=7 (3.3)
_,/I'B-Jd)-B

.DJ.B = <———1VX[2 (34)

" 1 B?
Dw =P (V _P <?)) (1in2> (3.5)

J-B\’ / B?\ /(J-B)
D = —==) — . (3.6
o =(5x) ~(er) (imep) - ©9
Here ¢+ and 2%y are the rotational transform and

the toroidal magnetic flux, respectively. The prime
means the derivative with respect to x and the
bracket is the flux average defined by

d
(£y=g [ rav (3.7
The first term given by Dg is the magnetic shear term
and always has a stabilizing effect. The term of Dy
is the magnetic well term, including the V" contri-
bution. The last term of Dg . is called the geodesic
curvature term because the Pfirsch-Schlitter current
which is the current parallel to the magnetic field is
the solution of the magnetic differential equation

_2PBxVyx-&

B B )

Vo (3.8)
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where & is the curvature of the field line given by
kK = b-Vb (b = B/B) and o is defined by
o =J-B/B% The second term D;.p consists of the
net toroidal current I and the parallel current, which
can be recognized as a correction by the geodesic cur-
vature to the magnetic well effect. Once an equilib-
rium is obtained, it is straightforward to calculate the
Mercier criterion.
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Fig.3.14 Mercier stability diagram for the (a) fixed, {b)
free-shifted and (c) vertical-field conirol equilibria. Shaded
regions in {a) and (¢} show the region of Merdier instability.
Solid lines in these regions are the contours of the level
surface of Dy with the difference of AD; = 0.1. Dashed lines
indicate the positions of rational surfaces corresponding to
1=1,3/4, 2/3, 1/2 and 1/3 from right to lefi. The
dot-dashed line marks the location of the transition between
a magnetic well and a magnetic hill. [47]

Figure 3.1.4 shows the contours of the level sur-
face of Dy in the Mercier unstable region with the
positions of several rational surfaces in the fixed
boundary, the free-shifted and the vertical-field con-
trol cases. In the fixed boundary equilibria, the re-
gion around the magnetic axis is stabilized by the
magnetic well and the peripheral region is also stabi-



lized by the magnetic shear inspite of the magnetic
hill. The middle region is slightly Mercier unstable
as shown in Fig.3.1.4(a) because both stabilizing con-
tribution is weak. As is discussed in Sec.3.2.1, it is
considered that the absolute value of D; is related
to the growth rate of the corresponding global mode.
Hence, the equilibrum is actually stable against the
global interchange mode because the maximum of I};
is very small ( D; ~ 0.1 ). In the free-shifted case,
the unstable region disappears completely. This is be-
cause the contribution of the magnetic well is strongly
enhanced as shown in Fig.3.1.3(b). As are in the pro-
files of the rotational transform and the magnetic well
depth, the behavior of Dy in the equilibria with the
vertical-field control surprisingly agree with that of
the fixed boundary equilibria. Hence, the equilibrium
calculations under the fixed boundary condition are
good approximations of the free boundary equilibria
with the vertical-field control.

In the free boundary calculation, the magnetic field
in the vacuum region outside the plasma is also calu-
culated. Such information can be useful in the exper-
imental identification of the plasma column position.

3.1.2 Effects of horizontal plasma position

In heliotorns, the position of the plasma column or
the outermost surface can be shifted horizontally in
the vacuum configuration by changing the currents in
the poloidal field coils to control the vertical magnetic
field. The horizontal pesition control is the most ba-
sic freedom in the heliotoron configuration because
the vertical field is inevitable to generate the mag-
netic surfaces. Generally speaking, when the plasma
column is shifted inward or outward by the vertical
field in the vacuum configuration, the magnetic axis
is more shifted in the same direction than the outer-
most surfaces. In the case of the LHD, the position
of the magnetic axis almost coincides with the po-
sition of the center of the outermost surface in the
case of A, = —15cm, which is called the standard
configuration. Here A, denotes the position of the
vacuumn magnetic axis measured from the center of
the helical windings. Hence, the magnetic axis is lo-
cated outward from the center of the outermost sur-
face for A, > —15cm while it is Iocated inward for
A, < —15cm. The relative relation of the positions
between the magnetic axis and the center of the out-
ermost surface definitely influences the magentic well.
That is, the region of the good curvature of the field
line extends if the magnetic axis is shifted outward.

11

The effects of the shift on the Mercier stability was
investigated intensively in the fixed bounadry LHD
equilibrium. Figure 3.1.5(b)[51} shows the Mercier
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Fig.3.1.5 Merdier stability diagram in the LHD configuration
for (a} T = —50kA (decreasing 1}, (b) I = 0 (currentless) and
(c} I = +50kA (increasing 1) with the equilibrivm limits in
the (8, A,) plane. Dotted areas show unstable region.
Dashed lines in these regions show the contours of the level
surfaces of Dy = 0.1, 0.2, 0.3 and 0.4. [51]

unstable region with the level surfaces of D; =0.1,
0.2, 0.3 and 0.4 in the 8; — A, space in the current-
less equilibrium with the pressure P = Py(1~s)*. As
is expected from the tendency in the magnetic well,
the Mercier stability is improved as the magnetic axis
is shifted outward. Hence, the configuration with the
outward shifted axis is more favorable than that with
inward shifted axis against the interchange mode. In
the LHD case, however, the orbit of deeply trapped
particle in the helical magnetic ripple becomes worse
in the outward shifted case. Therefore, the configu-



ration with A, = —15cm which is marginally stable
against the interchange mode (D < 0.1) is chosen as
the standard configuration as a compromize between
the MHD stability and the orbit loss of the particle.
We also see the second stablity region at high beta
against the Mercier mode. If an operation path to get
into this region will be established, the stable opera-
tion against the interchange mode will be guaranteed.
3.1.3 Study of the magnetic island and the
stochastic region with the HINT code

The HINT code[39} has been applied to heliotron
plasma mainly te know how the vacuum nested sur-
faces generated by the external coils are destructed
by the finite pressure. Figure 3.1.6[52] shows the

Finite Pressure

Vacuum

s N

Fig.3.1.6 Poincaré plots of the magnetic field line for an LHD
like configuration (a) for a vacuum ficld and (b) for a finite
beta equilibrium. [52]

Poincaré plots of the magnetic field line of the vac-
uum field and the equilibrium at {8} = 3.7% in the
LHD like configuration. The magnetic surfaces are
destroyed owing to the finite beta effect particularly
in the peripheral region. The magnetic island chain
can be also seen inside the plasma column.

The destruction of the magnetic surfaces resulis
from the Pfirsch-Schliiter currents[53). Under the ex-
istence of the assumption of the nested surfaces, the
Pfirsch-Schliiter current which is the parallel compo-
nent of the equilibrium current can be written as

J-B Ij-JI
B: T I+ Jy
P
nl4md PV, cos(méd — n{}3.9)

_m;e%#u T + I X (me — )
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where the Boozer coordinates[54] (s,4,() are em-
ployed and /g, denotes a Fourier coefficient of the
Jacobian. And 27y and 27¥ are the toroidal and the
poloidal magnetic Ruxes, respectively, and 27 and
27 J are the total toroidal current inside the fux tube
and the poloidal total current outside the flux tube,
respectively. The prime denotes the derivative with
respect to s. From this equation, the current diverges
at every rational surface of ¢ = n/m unless \/g__ =0
or PP = 0. At the nested surfaces with P’ # 0, such
divergence is avoided by the condition \/g__ = 0. In
the case of \/§__ # 0 at ¢« = n/m surface, P' = 0
should be satisfied so that the Pfirsch-Schliter cur-
rent should not be singular, which leads to the forma-
tion of the magnetic 1sland or the stochastic region.

The theory to study the stability of the equilibrium
including the magnetic island and the stochastic re-
gion against the interchange mode has not been es-
tablished yet. However, the information of the change
of the outermost surface due to the finite pressure is
very useful in the determination of the outermost sur-
face iIn the calculation of the VMEC code, of which
result is widely used in the stability analysis.

3.2 Stability Boundary for Ideal In-
terchange mode
3.2.1 Relation between Mercier criterion

and global modes

The main purpose in the stability analysis is to
determine the stability boundary in specified param-
eters. Because the pressure driven mode is usually
dominant in the heliotron plasmas, it is the most im-
portant issue to find out the critical beta value lim-
ited by the instabilities. Since the helical component
of the vacuum magnetic field inherently generates the
bad curvature of the field line, the ideal interchange
mode has to be examined at first. In this point, to
evaluate the Mercier criterion is very convenient as
shown in the previous sections. As the Mercier crite-
rion is a local stability criterfon, it can indicate the
equilibrium is unstable even in the case that the mode
structure is extremely localized around the rational
surface with infinitesimal mode width. Therefore, the
Mercier limit may give too severe result in the eval-
uation of the stability and the global mode analysis
should be needed to determine the actual beta limit.
However, it has been shown that the Mercier crite-
rion gives a good measure of the global stability and



we can roughly estimate the stability boundary due
to the global mode by uiilizing the criterion

In the one-dimensional case, the Mercier criterion
is reduced to the Suydam criterion[55]. The criterion
for the heliotron plasma is given by

1d12

i (E ogc) +
where the cylindrical coordinates (r,6,z) are used
and 2 is the averaged field line curvature given by
eq.(2.28) under the cylindrical limit. Sugama and
Wakatani[56] examined the relation between the crit-
ical beta value determined by the Suydam criterion
and the low-n global interchange mode obtained nu-
merically in the vicinity of the critical beta value.
They showed thai the low-n mode can be unstable
only in the case § > 8,, where 3, is the beta limit
given by the Suydam criterion and there exists a ‘gap’
between 3, and the critical beta value determined by
the low-n mode as shown in Fig.3.2.1. In the one
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Fig.3.2.1 Growthratesofthemn=1/n=1, m=2/n =2 and
m = 3/n = 3 modes versus the central beta value 3(0). The
upper curve shows the growth rate of the Suydam mode. [56]

dimensional case, the growth rate of the ideal inter-
change mode v, can be obtained analytically in the
Emit that the mode is quite localized in the vicinity
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of the resonant surface. This mode is called a Suy-
dam mode. The behavior of the growth rate near 3,
is approximately given by

const.
s X eXp | — - m—— |,
! p( \/ﬂ/ﬁ,—l)

which shows that the critical beta value coincides to
B,. This equation shows that v, is quite small and
flattened near the critical betz. Furthermore, the
mode structure of the interchange mode extremely
shrinks toward the resonant surface as the beta value
approaches to the critical beta value from the value
of the strongly unstable region. Because of above rea-
sons, it is very difficult to obtain the ideal interchange
mode just above f, numerically. It accounts for the
existence of the gap in the critical beta values deter-
mined by the Suydam criterion and the low-n global
mode.

The similaz relation is found between the Mercier
criterion and the two dimensional stability calcula-
tion. ¥igure 3.2.2. shows the level surfaces of D;

(3.11)
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Fig 3.2.2 Contours of the Mercier parameter in the 3 versus
minor radius representation. The locations where the low-n
unstable modes are found are indicated by the thick dashed
lines. [57]

and the positions of the several rational surfaces[57]
in a Heliotron E plasma. The gap can be seen also
in this figure. It has been pointed out that the un-
stable mode can be usually obtained in the region
with Dy > 0.2. Fu et al.[46] also obtained a simi-
lar relation by using the three-dimensional stability
code TERPSICHORE(38]. The low-n mode would be
marginally unstable with a small growth rate in the
region 0 < Dy < 0.2. However, such 2 marginally



unstable mode can be easily stabilized by some ki-
netic effects such as the finite Larmor radius effect.
Therefore, we should treat the Mercier criterion as a
measure of the stabilily against the ideal interchange
mode, which indicates that the global mode may be
unstable for D; > 0.2 rather than Dy > 0.

3.2.2 Effects of pressure flattening

Since the interchange mode is driven by the pres-
sure gradient, it can be stabilized by flattening the
pressure profile around the resonant surface. It was
shown by Ichiguchi et al.[58], how effectively the
mode is stabilized by the pressure flattening in the
LHD configuration with inward-shifted vacuum mag-
netic axis. Figure 3.2.3 shows the profile of the

1.5 T 2
— - )
g Y4
Q -~ /]
3 1+ 7
o Va =
P R -t
= ¥ /-/ 41 2
= \ -~ £
o .
B X E— B ©
i I
C
e~
i
0 03 1°

Fig.3.2.3 Profiles of the rotztional transform { dashed-dotted
line ) and the pressure at 5{0) = 2% in the inward-shifted
LHD configuration. Solid and dashed lines show the smooth
and the Hattened (w = 0.035 } pressure profiles, respectively.
[58]

rotational transform of a currentless equilibrivm at
Bo = 2%, where By denotes the beta value at the
magnetic axis, with the smooth pressure profile Pg
given by

P =R1-M%  (p=5)

which is shown by the solid line. In this case, there
exists the rational surface with ¢ = 1/2 in the plasma
column. The stability calculation with the RESORM
code gives an unstable n = 1 ideal mode. Figure
3.2.4 shows the mode structure of the stream func-
tion. The dominant component is m = 2 which is

(3.12)
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Fig.3.2.4 Fourier components of the stream functiorn of the
n =1 ideal mode at §(0) =2% with the smooth pressure
profile in the inward-shifted LHD configuration. [58]

resonant at the surface with + = 1/2 and shows a
typical interchange type structure. The half-width of
the component is 0.14 in p.

The effects of the pressure flattening is considered
by assuming the profile of

P=P,+Mp—p;)exp [—% (—e—;—pi)z] . (3.13)

Here w is the measure of the width of the flat-
tened region, and A is determined so as to satisfy
dP/dp = 0 at a specified position, p = p,. In this
case, p; = ple=1y2 is chosen to see the stabilizing ef-
fects of the interchange mode. The flattened pressure
profile for w = 0.035 is also plotted in Fig.3.2.3. The
difference between the smooth and the flattened pro-
files is very small in this value of w. The size of the
flattened width is too small to influence the profile
of the rotational transform. However, this small flat-
tened region plays a significant role in the stability.
Figure 3.2.5 shows the dependence of the growth rates
of the interchange mode on the width of the flattened
region. The mode is effectively stabilized by enlarg-
ing the width, and is completely stabilized by the
pressure flattening with w = 0.037 at 8; = 2% which
is about a quarter of the half-width of the mode for
the smooth pressure profile. Similar stabilization is
also obtained at 3y = 1 and 3% as shown in Fig.3.2.5.
Thus, the interchange mode can be stabilized by flat-
tening the pressure at the resonant surface with much



0.04

0.03-

YTa

BOY=3%1,

0.02+ h\

- BOFE1%
K

05

0.01

.04

Fig.3.2.5 Growth zate of the n=1 ideal mode in the
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narrower width of the flattened region than the half
width of the mode.

One of the possible ways to control of such pressure
flattening is utilizing the magnetic island formation.
In the LHD, the local island divertor coils are pro-
vided so as to generate a magnetic island at the edge
of the plasma region[59}. The islands can be gener-
ated also inside the plasma column by controlling the
currents in the coils. On the other hand, Carreras et
al.[60] show the possibility that the nonlinear satu-
ration of the resistive interchange mode flattens the
pressure profile at rational surfaces automatically.

3.3
3.3.1

Resistive Interchange mode

Properties of the resistive interchange
mode

There always exists finite resistivity in the plasma.
Hence it is important to study the stability against
the resistive modes. In this case, it is useful to utilize
the technique based on the reduced MHD equations
because including the resistivity is very easy.

Figure 3.3.1 shows the growth rates of the n = 1
instability for several S in the Heliotron DR current-
less equilibrium calculated with the RESORM code.
Here S is the magnetic Reynolds number which is
defined by

. 'R
S= ™ (3.14)

with the resistive diffusion time 7 = a®/n and the
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Fig.3.3.1 Growth rates of the n=1 resistive interchange
modes versus B for § = 10°%, 10%, 10° and 10%. The growth
rates at S = oo (ideal case) are shown for comparison {dotted
linc). {26]

poloidal Alfvén time 74 = Ry\/pm/Bp where a and
Pm denocte the average minor radius and the mass
density. The mode structure corresponding to each
growth rate of this figure shows the shape of the typ-
ical interchange mode.

In the ideal limit, the beta value at the magnetic
axis limited by the n = 1 interchange mode and the
critical beta value is By = 1.2% as shown in Fig.3.3.1.
On the other hand, it is obtained that the Mercier
limit s By = 0.7%, and therefore, the gap between
the critical beta values discussed in Sec.3.2.1 can be
seen. For the finite S values, the resistive interchange
modes are obtained. In the region with 8¢ > G, the
growth rates of the resistive interchange mode are
larger than those of the ideal mode. This is because
the ‘frozen-in’ condition of the magnetic flux is re-
laxed by the finite resistivity, and therefore, the free-
dom of the perturbation is extended. Furthermore,
the resistive interchange mode can also be unstable
in the region of 0 < B < Hg.- This result can be un-
derstood from the fact that the growth rate obtained
in the cylindrical limit scales as

m2ﬁg 1/3
(7

in the bad curvature region{62]. Because there always
exists a magnetic hill region in the vacuum heliotron
configuration, the resistive interchange mode can be
also unstable at a small beta value.

(3.15)
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Fig.3.3.2 Dependence of the growth rate of the n=1 mode on
the magnetic Reynolds number § for vanious 5. [26]

Figure 3.3.2 shows the S dependence of the n =1
mode at several beta values. In the case of Gy = 0.5%,
where the ideal mode is completely stable, the growth
rates are proportional to $71/3. This means the
mode is consistent with eq.{3.15) in the ideal sta-
ble region. As the beta value increases, the devia-
tion from the S~%/3 dependence becomes large. This
is due to the influence of the ideal mode on the
growth rates of the resistive mode. The deviation
appears even at 3 = 0.7% and 1.0%, where there
is no unstable global ideal mode but Dy > 0. As
discussed in Sec.3.2.1, these beta values correspond
to the marginal unstable region against the ideal in-
terchange mode or the ‘gap ’ region. Therefore, the
properties of the low-n resistive mode are affected by
the ideal instability in the Mercier unstable region
even if i is difficult to obiain a global ideal inter-
change mode by a numerical calculation.

3.3.2 Non-resonant modes

The RESORM code numerically found a new type
of non-resonant or near-resonant resistive pressure
driven mode localized near the magnetic axis in he-
liotron configurations[33]. This mode appears in the
case with a pressure profile peaked at the magnetic
axis. Figure 3.3.3 shows the profiles of the rotational
transform in the Heliotron E equilibria with highly
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Fig.3.3.3 Profiles of the rotational transform at several beta
values and the normalized pressure, P/P; = {1 — p*)*, where
p = /¥y, in Heliotron E curzentless equilibria. [33]

peaked pressure profile,

P = Fy(1 - p*)%. (3.16)
Here, p denotes the square root of the normalized
poloidal magnetic flux. The magnetic shear in the
region around the magnetic axis is easily reduced by
the finite beta effect. In the case with high resistivity
of § < 10%, a mode of which the stream function has
a ballooning-like structure as shown in Fig.3.3.4(a).
Each Fourier component of the streamn functions is
not resonant at the rational surface, but localized
around the magnetic axis. In this region, the mag-
netic shear is very weak and the pressure gradient is
substantial. Therefore, the mode which is not reso-
nant at the rational surface can be unstable in the
vicinity of the magnetic axis.

It is also obtained that the property of the non-
resonant structure still remains in the increase of the
beta value. Following the change of the rotational
transform profile at finite beta values, however, the
dominant poloidal Fourier component of the mode
changes so as to make the parallel wave number small
(not zero). As S increases, the radial mode structure
becomes narrower and the peak position approaches
the magnetic axis, as shown in Fig.3.3.4(b). Figure
3.3.5 shows the growth rate of the mede as the func-
tion of S. The numerically obtained growth rate is
proportional to $~/3. In the increase of S, a tran-
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Fig.3.3.4 Stream function ® with n=2 at By = 1% in the
equilibrivm of Fig.3.3.3 for (2) § = 10° and (b) § = 10°. The
rumbers denote poleidal mode numbers. [33]

sition to an unstable resistive interchange mode lo-
calized at a resomant surface occurs at a critical §
value.

In order to understand the properties of the non-
resonant mode, the dispersion relation was also de-
rived analytically in the electrostatic approximation
in the cylindrical geometry. In the electrostatic ap-
proximation, the three-field equations are reduced to
an ordinary differential equation given by

D, m?

7Vi¢'mﬂ =S(n— ms)gémn =

B (3.17)

for a specified Fourier component of the stream func-
tion, ®,.,, in the cylindrical coordinates (r,8,().
Here D, is the driving contribution by the pressure
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Fig.3.3.5 Dependence of the growth rate on the magnetic
Reynolds number of the mode corresponding to Fig.3.3.4.
The closed and the open drcles correspond to the
noon-resonant mode and the resistive interchange mode,
respectively. For all ines, v x §71/3 js assomed. v is
normalized to the poloidal Alfvén time. {33]

gradient defined as

bper
where € denotes the inverse aspect ratio and the prime
means the derivative with respect to r. In this cylin-
drical configuration, the averaged magnetic curva-
ture is attributed to only the helical component in
eq.(2.28), which can be written as

N1ld
_aiNla, 4
€ Irzd'r(r ¢)

D,= (3.18)

04 (3.19)
where { and N are the pole number and the number
of the field period of the helical windings.

Bere, it is assumed that the mode is localized
around a certain point, 7 = r,, the magnetic shear
is very weak so that ¢/(r;) ~ 0, and the pressure gra-
dient is constant around r = r,. Then, D, becomes a
linear function of r and can be written as D, = C,7,
and the parallel wave number, ky = n — e, becomes
almost constant. By setting

2
. 1{Cm?
P2\ 8K )

(3.20)



and transforming y = /7®m, and z =
€q.(3.17) can be reduced to a Weber type equation
which has a dispersion relation given by

T — Ty,

Cgm4
@m+ i8R

7=

(3.21)
for the largest growth rate. The corresponding eigen-
function is the zeroth parabolic cylindrical function
expressed as

1

Dn = 7 exp [—%(r - 'rp)z]

(3.22)

1

(2m + 1)2C’pm2
e T

1/3
, (3.23)
]

where H is a function of Cp, § and k). This analytic
eigenfunction explains well the tendency that the
mode structure shrinks and approaches the magnetic
axis because H x S~2/* and r, o« S7%/3. Besides,
eq.(3.21) accounts for the dependence of v x S71/3
and the fact that the smalier k gives the larger v,
which are also shown in the numerical results.

The reason why the ballooning like structure is ob-
tained numerically is because the toroidicity compo-
nent is dominant in Q ({the first term of eq.(2.28))
in the vicinity of the magnetic axis rather than
eq.(3.19). The transition can be explained by the fol-
lowing consideration. The region of the free energy of
the non-resonant mode is more reduced than that of
the resistive interchange mode as S increases. Thus,
when the free energy becomes smaller than that of the
resistive interchange mode at a critical 5 value, the
transition occurs and the resistive interchange mode
becomes dominant in the growth rate beyond the S
value.

Effects of Net Toroidal Current

Effects of the peaked current density
on the interchange mode

3.4
3.4.1

The heliotron configuration has an advantage that
there exists an equilibrium without any net toroidal
current. In practice, however, the net toroidal current
can flow in the plasma column due to some transport
process, such as the bootstrap current and the beam
current. Besides, the Ohmic current can be driven
by providing the inductive coils like tokamaks. There-
fore, it is very important to study the effects of the net
toroidal current on the MHD properties in heliotron
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plasmas. The eflects of the net torcidal current on
the Mercier stability in the LHD configuration were
studied intensively with a given current demsity by
Ichiguchi et al.[51]
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Fig.3.4.1 Profiles of the rotational transform ir the LHD
equilibria with By = 3T at fp = 0% carrying several net
toroidal currents.

The net toroidal current changes the profile of the
rotational transform through the direct effect on the
poloidal magnetic field. Figure 3.4.1 shows the profile
of the rotational transform for several net toroidal
current in the LHD standard configuration at Gy =
0%, where I denotes the total toroidal current and By
is assumed to be 3T. In this figure, the net toroidal
current density J is assumed to be

J = &1 - s (3.24)
As is shown in this figure, the positive I corresponds
to the increase of the rotational transform and the
negative one to the decrease.

The effects of this net toroidal current on the
Mercier criterion is summarized in the diagrams of
Fig.3.1.5 (a}) and {c). As is shown in these figures,
the Mercier stability is improved by the current de-
creasing the rotational transform and is deteriorated
by the one increasing the rotaional transform. The
mechanism of the contribution to the Mercier stabil-
ity can be understood by considering the magnetic
well. In the limit of large aspect ratio and low beta,
the Shafranov shift of the magnetic axis is nearly pro-
portional to &5, where ¢y denotes the rotational trans-

form at the magnetic axis[61]). Figure 3.4.2 shows
that this tendency is seen in the LHD plasmas carry-
ing the net toroidal current. That is, the reduction
of the rotational transform for I = —50kA permits
a large Shafranov shift in the finite beta equilibrium,



0.8 T T 1T 1 T 1 T T
0.6
& 04
%
o 02
, .
mﬁ \ currentiess
°r I=+50KA |
- 1 1 1 A 1 1 | ]
O'20 5 10
Bo (%)

Fig.3.4.2 Shafranov shift of the LHD equilibria in standard
configuration (A, = —15cm). The dotted, solid and the
dot-dashed lines show the cases of I = —50kA (decreasing 1},

I == 0kA (currentless ) and I = +50kA (increasing 1),
respectively. [51]

which is defined by the difference between the ma-
jor radius of the magnetic axis, R,., and the major
radius of the outermost surface, R_,;, normalized by
the average radius of the outermost surface, r,,, here.
The large Shafranov shit deepens the magnetic well.
Figure 3.4.3 shows the well depth at 5 = 6%. The
width of the well region is almost independent of the
net toroidal current. However, the absolute value of
V" is increased by the current of / = —50kA. Thus,
the enhancement of the magnetic well brings the sta-
bility contribution against the Mercier mode in this
case. On the contrary, the suppression of the well
formation makes the equilibriumn unstable in the case
of I = 4+50kA.

1t is noted that the tendency that the outward shift
of the magnetic axis in A,, stabilizes the Mercier mode
and the inward shift destabilizes the mode is common
in each net toroidal current case as shown in Fig.3.1.5.
This means that the effect of the net toroidal current
on the Mercier criterion is almost independently su-
perposed on the effect of the magnetic axis shift due
to the vertical field.

In Fig.3.1.5, the equilibrium limit is also drawn in
each case of I. The large Shafranov shift pushes the
magnetic surfaces toward the outward of the torus.
As the beta value increases, the contour of the mag-
netic flux labeled by s becomes dense in the outward
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Wall Oapth <712

Fig.3.4.3 Magnetic well depth of the LHD equilibria in
standard configuration {A, = —13cm). The dashed, sclid and
the dot-dashed lines show the cases of I = - 50kA (decreasing
1), I = kA (currentless ) and I = +50kA (increasing 1),
respectively. [51]

region of the plasma column and the pressure gradi-
ent becomes locally steep in such region. When the
pressure gradient becomes toc steep to balance the
magnetic force, the equilibrium beta limit appears.
In the J = —50kA case, the large Shafranov shift is
favorable in the Mercier stability; however, it brings
lower equilibrium beta limit.

3.4.2 Formaulation of the bootstrap current

in three-dimensional configuration

Among the various net toroidal currents in the he-
liotron configuration, the bootstrap current is espe-
cially important, because it is generated without any
external current driving source. According to the
neoclassical transport theory, the bootstrap current
results from the balance of the viscosity between the
trapped particles and the passing particles and the
collision with the particles of other species. Here we
review the formmulation of bootstrap current in three-
dimensional configuration briefly[63, 64, 65, 66].

The first order of the moment equations in the neo-
classical ordering gives the balance equations for the
momentum and the heat flux. The balance equations
which are flux-averaged and parallel to the magnetic
field line are written as{65]

( (B~V-Hu))=(

- (B-V.0,
Here, the effects of fast ion, charge exchange and in-
ductive electric field are neglected for simplicity. I,

(B-Fu)

B ) (3.25)



©, F, and F; denote the particle viscosity, the heat
viscosity, the particle friction and the heat friction,
respectively. Subscript @ means the species of the
particle and the bracket represents the flux average.
The parallel friction can be expressed as[67]

ab

= (&
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( (B - Fg)
— (B-Fa)
“ (3.26)
:) ( B2 )
where % and q are the particle flow and the heat flow,
respectively, and I;’s are the friction coefficients.
The parallel viscosity is given by evaluating the so-
ution of the first-order drift kinetic equation for the
gyro-averaged distribution function. This solution di-
rectly depends on the orbits of the particles which
reflects the influence of the magnetic configuration
and the collisionality of the species. The first-order
drift kinetic equation can be analytically solved in the
limits of the 1/v, the plateau and the Pfirsch-Schlitter
collisionality regimes. Hence, the solution gives only

the asymptotic expressions of the parallel viscosity in
each collisionality regime, which can be summarized

(B . ﬂ.f,)
(B -qy)

as[66]
(B-V-IL)
- {(B-V-0,)
. g 3.27
_ ( fer phea ) (u. - V) (3.27)
Ha2  Has V)
with
6 =1+ Gp)0+ (J —¢Gh)C, (3.28)
where p.:"s are the viscosity coefficients. Here the

Boogzer coordinates {x,#,() are used. The main role
of the parallel viscosities are to transfer the momen-
tum between the particles of the same species through
damping the flow and the heat flux in such a direc-
tion that the magnitude of the magnetic field varies.
Equation (3.27) shows that the direction of the vis-
cosity damping is determined by 6. This angle is
characterized by G, which is called the geometrical
factor. In tokamak case, for example, the geometri-
cal factor is given by Gi* = J/e, which implies that
the damping direction is the poleidal direction. On
the contrary, in the three-dimensional configuration,
G} varies depending on the magnetic geometry and
the collisionality regime of the particles, and there-
fore, the damping direction as well.
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From the lowest order of the moment equations,
the flow and the heat flux perpendicular to B are
obtained,

Uio = Aia B (3.29)
and
P B x VX
9. B2 (3.30)

Here A; and A, are the thermodynamic forces given
by

1 4P, da,
o €eTig dX dX (331)
and
14T, 3.39
2 e dx (3.32)

where e, n, T and @, denote the charge of the parti-
cle, the density, the temperature and the radial elec-
tric potential, respectively. Utilizing the expressions
of (3.29) and (3.30), the left hand side of eq.(3.27) is
B 2
( - q)+ 5—P:1GbaA2a

given by
L
(3.33)

By solving the balance equations (3.25) for the paral-
lel momentum and heat flux with (3.26), (3.27) and
(3.33), the bootstrap current can be evaluated by

(B-Js) = geana(B " Ug)-

(o) (B0, Ot

(g, V&)

(3.34)

Here, we assume that the plasma is composed of
electrons and protons, and the temperature and the
density of the electrons equals to those of the protons,
respectively, and the radial electric field is neglected.
In this case, the asymptotic expression of the total
bootstrap current, I, in each collistonality regime can
be written as

{(Js- B)

L= 2% [ o (3.35)
(7s-B) = -G, (le—P+L2n§§), (3.36)

where L; and L. are the transport coefficients com-
posed of the collision and the viscesity coefficients.
As is seen from eq.(3.36), the change of G, is im-
portant in the evaluation of the bootstrap current in
heliotron configurations because it can change the di-
rection of the current through the change of the flow
damping.



In the limit of the 1/v regime, the geometrical fac-

tor, G./”, is given by following equations[65],

1w 1 3(B%) r1{gs)
G} }:{( % - g /0 mxdx} (3.37)
and
g =4/1- J\Bi:, (3.38)

where f; is the fraction of the trapped particles given
by

3 (B%)
4 B?

™maT

fi=1- Em

and g; and g4 satisfy the magnetic differential equa-
tions of

(3.39)

1
B-V(%) :vax-v(—B—z) 92(Bona) = 0

(3.40)
and
G4 1 —
B-V|Z=|=BxVx-Vi—]|, 0{Bms=}=0,
n o
(3.41)

respectively. The geometrical factor in the limit of
the plateau regime, GF, is given by[68]

Gy =(g) - g(J +eD) Ay (3.42)
= (n - Vg2 /(2B2))rne’m0+74)
hy = <”Bm¢u or nF) bme + n| >
(3.43)
and -
A (3.44)

# T 7 +eD)hs

I
hz = <T13
m#}%} n0 e + nj

( n_B) ilmnd)
B TRTL ’

(3.45)
where
ng=mn-VB, (3.46)
and
1 27 27 i
Ao = s fo 8 fo d¢ Aexpi(mf+nl). (3.47)

Here m is the unit vector along the magnetic field
and 2#J is the total toroidal current inside the flux
surface. Since the plasma collisionality in the recent
heliotron plasmas is usually between the 1/v and the
plateau regimes, the factor in the Pfirsch-Schliiter
regime is not discussed here.
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[n order to obtain the bootstrap current of the
plasma with any collisionality between above two lim-
its, a connection formula given by Watanabe et al.[68]
is utilized for the products of Gy and L, in (3.36) for
J =1 and 2. In the connection formula, the collision
frequency normalized by the bounce frequency, v, 1s
used as the parameter of the collisionality, which is

defined by{68]

1% 1 ft
TTREI= A

where A denotes the mean free path of the particle.
Although v, depends on the species of the particle
in general, the ions and the electrons have the same
value here because it is assumed that they have the
same density and temperature. The limits of 2, << 1
and ¥, >> 1 correspond to the 1/v and the plateau
collistonality regimes, respectively. The connection
formula is derived so that the the products of Gy and
L; in each limit should be given by the asymptotic ex-
pressions. Therefore, the expression of the products
between the two limits has the form of

M ()G + M (1) GE.

/\p!

(3.48)

LGy = (3.49)
Here M consists of the asymptotic values of L; and
the welght function depending on v,. In the 11m1t of
v, << 1, Mp approaches to zero and M * gives the
asymptotic vaIue of L; in the 1/v regime. In the limit
of v, >> 1, Mjl/ ¥ approaches to zero and MfI gives
the asymptotic value of L; in the plateau regime. The

exact expression of the connection formula is given in
Ref.{68].
3.4.3 Collisionality dependence of the boot-
strap current

As is mentioned in the previous section, in a
three-dimensional configuration the parallel viscesity
has different form in the limit of each collisionality.
Hence, the bootstrap current in the heliotron config-
uration strongly depends on the collisionality of the
plasma.

In order to calculate the geometrical factor, the
information of the equilibrium magnetic field is nec-
essary. On the other hand, the net toroidal current
including the bootstrap current is needed as an in-
put in the MHD equilibrium calculation. Thus, an
iterating method to calculate an equilibrium with
a self-consistent bootstrap current was developed as
follows[68, 69]. First, the finite beta equilibrium is



calculated by using the VMEC code with the net
toroidal current, /(s}, equal to zero. Then using the
magnetic fields found by the VMEC code, we calcu-
late the bootstrap current, Iy(s}. This current is then
input to the VMEC code and a new finite beta equi-
librium is calculated. This procedure is iterated until
convergence is achieved.

The variation of the bootstrap current depending
on the collisionality were studied for the LHD stan-
dard configuration[70] with the profiles of the tem-
perature and the density

Te = T; = Tg(l - 3), le = Ny = Tlg(l by S), (350)
where subscripts ‘e’ and ‘4" denote the values of elec-
trons and ions, respectively. In the study, two se-
quences of equilibrium is considered in increasing the
beta value for the same pressure profile. One is the
temperature sequence where the temperature is in-
creased with the density fixed at ny = 0.2 x 10¥m—*.
The other one is the density sequence where the
density is increased with the temperature fixed at
Ty = 0.5keV. The bootstrap current was evaluated
by using eq.(3.35). The magnetic field was assumed
to be By = 1T in both sequences.

Figure 3.4.4 shows the profiles of the geometrical
factors normalized by G{°* in the 1/v and the plateau
. . v . o
regimes. In the vacuum configuration, G’ is positive
in the whole region, while G{I has negative value ex-
cept the vicinity of the magnetic axis. This property
is almost kept at B = 6.4% for both sequences. The
total bootstrap currents given by eq.(3.35) in the two
sequences are shown in Fig.3.4.5. The positive value
in the figure corresponds to the net toroidal current
flowing in the direction so as to increase the rota-
tional transform. In the temperature sequence, the
positive bootstrap current is enhanced as the beta
value grows. On the other hand, in the density se-
quence, the total bootstrap current is enhanced in
the positive direction up to 8y = 4%; however, the
absolute value is much less than that in the tem-
perature sequence. The current is reduced beyond
Bo = 4% and becomes negative for By > 6%. That
is, the total bootstrap current reverses the direction.
Figure 3.4.6 shows the bootstrap current density at
Bo = 6.4% given by eq.(3.36). The current density
in the temperature sequence is always positive, while
in the density sequence the bootstrap current density

reverses partially in the radial direction.

Figure 3.4.7 shows the normalized collision fre-
quency v, defined by eq.(3.48). In the femperature
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Fig.3.4.4 Profiles of normalized geometrical factors in the
Himit of (a) 1/ and (b) plateau regimes in LHD with

By = 17T. Solid lines show the values in the vacuum
configuration. Dashed and dot-dashed lines show the values
at fo = 6.4% with Ty = 4keV, ng = 0.2 x 10®m™ in the
temperature sequence and with Tp = 0.5keV ,

n=1.6 X 10°°m~? in the density sequence, respectively. 1
denotes the normalized toroidal flux. |70}

sequence the collision frequency becomes small as the
beta value increases, and v, < 107! in the almost all
region of the plasma column at 85 = 6.4% where the
temperature is Ty = 4.0keV. Hence, the collisional-
ity of the plasma is in the 1/v regime and Gy/” has
a dominant effect in the connection formula (3.49)
rather than G’;‘ . In this sequence, Gif ¥ is always pos-
itive and the profile is insensitive to the beta value
as shown in Fig.3.4.4(a). It accounts for the large
positive bootstrap current.

On the other hand, the plasma in the density se-
quence becomes more collisional as beta grows. As
shown in Fig.3.4.7, v, is larger than unity at G
6.4% where the density is ng = 1.6 x 10®m~3. There-
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Fig.3.4.5 Total bootstrap currents versus fp in the
temperature sequence { dashed line ) and the density
sequence { dot-dashed line ). [70]

fore, the contribution of G’ in the connection for-
mula is larger than that of Gil “. At this beta value,
G{l is negative in the whole plasma region and has
a comparable absolute value with G;f ¥. Hence, the
total bootstrap current reverses the direction due to
mainly the negative G’{I for By > 6%. However, the
effect of the change in the profile of G;l ¥ cannot be
neglected. The reduction of G}'* in the central re-
gion shown in Fig.3.4.4(b) almost coincides with the
the negative current density region. Therefore, the
reduction of the positive Gy’” in the central region
also contributes to the reverse of the direction of the
total bootstrap current in the density sequence of the
LHD eguilibrium.

As is discussed in Sec.3.4.1, the peaked net toroidal
current flowing so as to increase the rotational trans-
form is unfavorable with respect to the stability
against the interchange mode and vice versa. This
tendency is also seen in the case of the bootstrap cur-
rent. Figure 3.4.8 shows the Mercier unstable regions
for the temperature and the density sequences. In the
temperature sequence, there exists a large unstable
region in the plasma column in Fig.3.4.8(a) and the
value of D is enhanced as the beta value grows. This
is because the magnetic well and the magnetic shear
are suppressed due to the small Shafranov shift. An
unstable region is also seen in the density sequence in
Fig.3.4.8(b), however; the value of Dy is small. Fur-
thermore, the second stability region for the Mercier
criterion appears at lower beta value than that in
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Fig.3.4.6 Profiles of the bootstrap current density. Dashed
and dot-dashed lines correspond to the same lines in Fig.3.4.4,
respectively. ¢ denotes the normalized toroidal flux. [70]

the corresponding currentless equilibrium sequence
shown in Fig.3.1.4(a). This is because the local boot-
strap current density is already negative in the central
region of the plasma even at the beta value where the
total bootstrap current is slightly positive as shown
in Fig.3.4.6.

The equilibrium with self-consistent bootstrap cur-
rent is also calculated with the HINT code[71]. In this
case

3

oB
FTA

_{Js- B)

T

B)] (3.51)

is used instead of eq.(2.18) to include the effect of
the bootstrap current. The procedure for the self-
consistent bootstrap current is similar to the case in
the VMEC code. The obtained bootstrap current for

the LHD plasma shows a good agreement with the
VMEC code results.

3.4.4 Internal kink mode in heliotron plas-

mas

When the net toroidal current flows in the plasma
column, it is possible that the current driven mode
should be unstable. In the ideal stability analysis,
the current driven mode is classified into the internal
kink mode and the external kink mode. Both modes
are found numerically in the heliotron plasmas.

An internal kink mode can be unstable at 8 = 0%
when there exist two resonant surfaces with the same
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Fig.3.4.7 Profiles of normalized collision frequency. Dashed
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respectively. ¥ denotes the normalized toroidal flux. [70]
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rotational transform. As the positive total current /
increases, the rotational transform near the magnetic
axis increases in the LHD standard configuration, as
shown in Fig.3.4.1. There are two surfaces withe = 1
in the plasma column at I = 300kA for By = 3T.
In this case, an unstable internal kink mode is unsta-
ble under the fixed boundary condition. Figure 3.4.9
shows the stream function of the n = 1 mode cob-
tained with the RESORM code for I = 300kA. The
dominant poloidal component is m = 1 and the typi-
cal structure of the m = 1 internal kink mode is seen,
which is localized between the magnetic axis and the
inner + = 1 surface.

This property can be understood by evaluating the
energy principle in the linear analysis. The potential
energy derived from the reduced MHD equations at
B = 0 under the assumption of the straight stellarator
configuration is given by

W = (B} BY) [[(F€) +gear,  (352)
f=r v=¢—nfm, s=¢+¢, (3.53)
g = rv[(m? — 1) — 3rej, — r%}], (3.54)

where £ is the radial displacement of plasma which
is given by £ = (1/r)0®/86. Here, ¢; and +; denote
the rotational transform component generated by the
helical coils and the net toroidal current, respectively.
The internal kink mode can be unstable when g <
0 because W can be negative. Since both ¢, and
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Fig.3.4.8 Mercier unstable regions for {a) temperature
sequence and (b} density sequence in the (fy,%) plane.
Shaded regions show unstable regions. Solid lines in these
regions are the contours of the level surface of Dy which differ
by AD; = 0.2. In (a) the contours with Dy > 8.0 are not
plotted because they are too dense. Dot-dashed line shows
the boundary between the magnetic well and hill regions.
Dashed lines indicate the positions of the rational surfaces
corresponding to £ = 1, 3/4, 2/3 and 1/2 from right to left. ¢
denotes the normalized toroidal flux. [70]

¢; are positive in heliotron configurations, g < 0 if
v > 0 for m = 1. Thus, the m = 1/n = 1 mode
can be unstable where + > 1. There are two regions
with ¢ > 1 in the plasma column in the case where
two ¢ = 1 surfaces exist, that is, the regions between
the magnetic axis and the inner ¢« = 1 surface and
the region between the outer + = 1 surface and the
plasma edge. In the former region, the displacement
vector which is constant in the radial direction except
the region around the inner ¢+ = 1 surface can make

the potential energy negative like the internal kink
mode in tokamaks{72]. However, the mode localized
in the latter region cannot be unstable, because the
gradient of £ is necessary near the edge to satisfy
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Fig.3.4.9 Fourier components of the n = 1 stream function in
the LHD configuration with I = 300kA. Dominant

component is m = 1/n = 1 mode.

the fixed boundary condition which has a stabilizing
contribution. Thus, the structure of the internal kink
mode in the heliotron plasma is localized in the inside
of the inner + = 1 surface, as shown in Fig.3.4.9.

Besides, eq.(3.54) suggests that the modes with
m > 2 can be unstable if 0 < v < (3ré}, +7%]) /(m* —
1), which cannot be unstable in the straight toka-
maks. Actually, the modes with m > 2 are obtained
numerically in the I = 300kA case. The m = n
component is dominant for the each mode and the
mode structure is localized in the inside of the inner
¢ = 1 surface, as is in the m = 1 mode. As shown in
Fig.3.4.10, the growth rate decreases as m increases,
and the modes with m > 6 are stable in this case.
This tendency is consistent with eq.(3.54).

In the finite beta current carrying plasma of He-
liotron E, a hybrid mode of the internal kink mode
and the interchange mode are destabilized[73]. When
the current profile is chosen to be highly peaked such
as J = Jy(1 — 5)!, the zero beta equilibrium of the
Heliotron E also has two ¢ = 1 surfaces in the plasma
column with a small total current. In this case, the
m = 1 /n = 1 internal kink mode is destabilized in the
inside of the inner ¢ = 1 resonant surface at fy = 0%
as shown in Fig.3.4.11(a}, where the radial compo-
nent of the displacement vector calculated with the
KSTEP code is shown. As f is increased with the
pressure profile of P = Py(1 — s)®, them = 1/n =1
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Fig.3.4.10 Dependence of the growth rate of the internal
kink mode on the poloidal mode number m in the LHD
configuration with I = 300kA.

interchange mode becomes unstable as well as the in-
ternal kink mode, which is resonant at the outer¢ =1

surface. At By = 6%, as shown in Fig.3.4.11(b), the
contribution of the interchange mode to the total po-
tential energy becomes comparable with that of the
internal kink mode, and beyond the beta value, the
interchange mode becomes dominant.

3.4.5 External kink mode in heliotron plas-
mas

In Sec.3.4.3, the effects of the bootstrap current on
the interchange mode was discussed. It was also stud-
ied how the bootstrap current drives the external kink
mode by means of the free-boundary version of the
KSTEP code in the LHD standard configuration[74].

The external kink mode is found in the tempera-
ture sequence in Sec.3.4.3, where the self-consistent
bootstrap current flows so as to increase the rota-
tional transform as the beta value increases. Figure
3.4.12 shows the growth rates for the fastest growing
free-boundary modes of n = 1, 2 and 3 with the con-
ducting wall at infinity. In the region of {8) < 2%
where the equilibrium is Mercier unstable as shown
in Fig.3.4.8(a}, the unstable modes shows the inter-
change type, i.e., they are localized around the reso-
nant surfaces inside the plasma column and the influ-
ence of the free boundary is weak. As the beta value
increases beyond 2%, the mode becomes much more
global and loses its resonance character. Figure 3.4.13
shows the Fourier component of the n = 1 mode at
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Fig.3.4.11 Displacement vector of the n = 1 mode for the
current carrying Heliotror E equilibria at 8y = 0% (top) and
6% (bottom). Here, 1 means the poloidal magnetic flux. The
arrows denoie the position of the 1 = 1 surface. [73]

(8) = 3.18%, which shows a structure of the exter-
nal kink mode. The n = 2 and n = 3 modes have
the similar structure. The dominant component is
the mode with the poloidal mode number such that
m = n for each n, because the rotational transform at
{B) = 3.18% is just above unity almost whole region
of the plasma column as shown in Fig.3.4.14.

In order to know which is the dominant driving
term in the potential energy, the current-driven term
or the pressure-driven term, a calculation with the
pressure driven contribution to the potential energy
ignored in eq.(2.26) and a calculation with the cor-
rect pressure distribution with J; = 0 were carried
out. Either calculation shows that an instability ex-
ists with a smaller growth rate than that for the full
potential energy, and the growth rates of the two
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Fig.3.412 Unstable eigenvalues, —A for the fastest growing
free-boundary low-n modes for the standard LHD
configuration with a self-consistent bootstrap current with
the conducting surface at b = oo as functions of the average
B. The circles denote growth rates for the » = 1 mode, the
triangles for the n = 2 mode, and the squares for the n — 3
mode. [74]

cases are comparable. This demonstrates that both
kink and interchange driven terms are important in
¢q.(2.26), because the equilibrium not only carries a
large net toroidal current but also is strongly Mercier
unstable.

In the no net current case, another type of the free
boundary mode can be unstable in the LHD standard
configuration[74]. The n = 1 and n = 2 modes are
destabilized with the conducting wall at infinity for
{(B) ~ 3%. The growth rate is considerably smaller
than in the bootstrap current case, but it is still large.
This mode has following properties. The mode struc-
ture, shown in Fig.3.4.15, is global and many side-
bands have comparable amplitude. As is expected
from the Mercier stability diagram of Fig.3.1.4(a),
the mode is stabilized when the conducting wall is
set at the plasma surface. The growth rate of the
n = 1 case is reduced considerably if the current
driven term in W is ignored, bui it is almost un-
changed if the pressure driven term is eliminafed.
Thus, the Pfirsch-Schliter current is responsible for
the instability. Similar instability is obtained in the
ATF configuration as well{75].
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Fig.3.4.13 Fourier components of the displacement vector
perpendicular to the magnetic surfaces, £y, for the fastest
growing free-boundary mode wiih a toroidal mode number
n = 1 for a configuration with a self-consistent bootstrap
current witk {8} = 3.18%; A = —0.182. Here, 1), means the
normalized poloidal magnetic flux. The dominant poloidal
mode number is m = 1, but other contributions are equally
important. As {} has been increased the mode has become
much more global in nature, being driven by both kink and
interchange effects. [74]

3.5
3.5.1

Ballooning modes
Local mode analysis

The ballooning mode is a crucial instability in high
beta tokamak plasmas, and therefore, the analysis in
the axisymmetric configuration has been extensively
progressed. As is in the tokamak case[76)], the ordi-
nary differential equation along the field line which is
called a high-n ballooning equation can be derived for
the ballooning mode in the three-dimensional config-
uration. The high-n ballooning equation is derived
for the mode with k, /k; << 1 in the covering space
(¥,7,a)[77). Here 4 denotes the label of the mag-
netic flux, 7 is the coordinate along the field line and
o is the label of the field line on a flux surface. When
flux coordinates (1,8, {} are employed, where 6 and ¢
are the poloidal and the toroidal angles, respectively,
the i and « are defined as

n=20, a={(-86/. (3.55)
It is noted that % is defined on the infinite domain,
e, —00 < % < o0 in the ballooning space, while 0 <

'y —h
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Fig.3.4.14 The rotational transform as a function of the
poloidal flux for the standard LHD configuration if a
self-consistent bootstrap current is introduced as 8 is
increased. The current, calculated for a low-density sequence,
adds to the transform provided by the helical structure. The
solid curve is for (8} = 0, the dashed curve is for

{8} = 1.57%, and the dotted curve is for {#) = 3.18%. Here,
¥ means the normalized poloidal magnetic Hux, [74]

6 < 2x. Here we employ the Boozer coordinates[54]
as the flux coordinates. Then, the magnetic field is
expressed as

B = Va x Vy. (3.56)

For the mode with &k /&y << 1, we can introduce an
eikonal expression for the displacement vector given
by

£=CEexp [2_8_@%1) - iwt] , (3.57)
where S is an eikonal which is related to the per-
pendicular wave vector as k; = VS. An ordering
parameter ¢ is introduced to indicate a large k. The
lowest order of the linearized MHD equations in
gives the high-n ballooning equation for £ = & - V¢
for given ¥ and ¢, which is written as

[k [?
B2

B-V[ B-VE]

2
+§BX,CJ_-RBX’CJ_'VP£

2 |ki{2£ =0,

= (3.58)

+pmw

where the incompressibility is assumed. Here the first
term is the field line bending term which has a sta-
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Fig.3.4.15 Fourier components of the displacement vector
perpendicular to the magnetic surfaces, £y, for the fastest
growing free-boundary mode with a toroidal mode number

n =1 for a configuration with no toroidal current with

(8) = 3.18%; A = —5.21 x 1077, Here, ¢, means the
normalized poloidal magnetic fiux. The dominant poloidal
mode number is m = 1. This mode would almost be stable if
the vacuum vesscl were treated as being perfoctly conducting.

[74]

bilizing contribution, while the second term is the
driving term of the instability.

The model of interest is a low-beta tokamak equi-
librium with the pressure which has a steep gradient
only in the vicinity of a magnetic surface. H a large
aspect ratio and a circular cross section are assumed,
the ballooning equation eq.(3.58) is reduced tof78]

% [(1 +A2)%] +af{Asind +cos )¢ =0, (3.59)

in the cylindrical coordinates (r,8,¢). Here A is de-

fined as
AG) = /: §d6 (3.60)
with the local magnetic shear, $, given by
5 = §p ~ agcosb, (3.61)

where 51 and ag represent a global shear in toka-
maks and a measure of the pressure gradient which
are defined with the safety factor ¢ = 1/s as,

g

'é;)

S | - g
S = qdﬂ", ap = —¢ Ro (3.62)
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respectively. Substituting eq.(3.61) into eq.(3.60), A
is expressed as

A(8) = 500 — agsiné. (3.63)

It is noted that 57 is positive in the standard toka-
maks and ap is also positive in the usual pressure
profile. Hence, A becomes small in the vicinity of
# ~ 0 if ag ~ Fr. In this case, the line bending stabi-
lizing term in eq.(3.59) is reduced, and therefore, the
ballooning mode can be destabilized.

(a)

Fig.3.5.1 (2} Equally spaced (1, ¢) mesh of the Boozer
coordinates of a horizontally-elongated cross section and (b)
the profiles of the rotational transform of the currentless
LHAD equilibrinm under the fixed boundary with

P = Py(1 — 4)? at fg = 8% in the standard configuration.
Here, ¥ means the normalized toroidal magnetic flux. [81]

On the contrary, in heliotron configurations, 57 is
usually negative and A cannot be reduced in eq.(3.63)
because dg/dr < 0 in the vacuum configuration.
Hence, it was speculated that the heliotron plasma



would be stable against the ballooning mode{79].
However, it was shown that eq.(3.58) can have un-
stable eigenmodes in the ATF[80] and the LHD[81]
three-dimensional equilibria. Figure 3.5.1(a) shows a
poloidal cross section with (1,8) grids in the Boozer
coordinates of a currentless LHD equilibrium at 8y =
8%][81], which is calculated with the VMEC code with
the pressure profile of P = Fy{1—s)%. The rotational
transform in this equilibrium is shown in Fig.3.5.1(b).
At the surface pointed by the arrow in the figure, an
unstable high-n ballooning mode is obtained which
has a structure shown in Fig.3.5.2.
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Fig.3.5.2 Eigenfunction of the high-n ballooning mode along
the ficld linc with (8; = 0,2 = 0) at the surface indicated by
the arrow in Fig.3.5.1(b}. [84]

The mechanism of the destabilization of the bal-
looning mode in the region with positive ¢'{4) can be
understood by the consideration about the local mag-
netic shear(81, 82, 83]. In the line bending term of
eq.{3.58), the square of the perpendicular wave vector
under the currentless condition in the Boozer coordi-

nates is given by
v\
{1+geg(l ¢] ) A}, (3.64)

where g;, is a covariant metric in the Boozer coor-
dinates. The local magnetic shear § in the three-
dimensional configurations is given by

-

k=
el Bogse

§=5+45,

(3.65)

where the global magnetic shear § and the oscillatory
part of the local shear § are defined by

. ~_,f31( Qﬂ)
s_'&d%b’ °= ¢999 ’

5 (3.66)
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respectively. In this case, A has the form of

7
A = §
L sdn (3.67)
=5(n-6;) 22, (3.68)
Ges
with 8, = ky/k, where ky, = 85/8¢ and k, =
35/8c.
100 0f 'U i 1
50.0F
oh'g a5 ge

o

Fig.3.5.3 Profile of |k |? along the field line with
(6r = 0,a = 0) at the swrface indicated by the arrow in
Fig.3.5.1(b). [81}

The sign of the metric gy is related to the angle
between the i-constant and #-constant lines in the
poloidal cross section. In the equilibrium with large
Shafranov shift as shown in Fig.3.5.1(a), sharp bends
of the f-constant lines in the Boozer coordinates can
be seen at a flux surface in the outward region of
the torus. We call the surface turning surface, where
gge = 0. The turning surface roughly corresponds
to the minimum point of the rotational transform in
Fig.3.5.1(b). Outside the turning surface, gys in 5 can
be approximated as ¢sin € with negative ¢. In this re-
gion, the global magnetic shear § is positive. There-
fore, the local magnetic shear can be reduced even in
the region with positive ¢'(3). The reduction of the
local magnetic shear leads to the substantial degra-
dation of |k |? around 5 = 6; as shown in Fig.3.5.3.
Then, the stabilizing effects in the line bending term
is reduced and the high-n ballooning mode is desta-
bilized of which mode structure is shown in Fig.3.5.2.

In order to investigate the property of the high-n
ballooning modes in heliotron configurations, we con-
sider the local curvature of the field line in the second
term of eq.(3.58) as well as the local shear. In toka-
maks, the curvature is attributed to only the toreidic-
ity, and the field line has no a-dependence. On the
other hand, the local magnetic curvagure in the he-
liotron equilibria consists of both the toroidal curva-
ture and the helical curvature. This results in the
fact that the local curvature is the most unfavorable
at the outside region of the torus in the horizontally



elongated cross section, while the curvature is locally
favorable even at the outside region in the vertically
elongated cross section. Thus, the local magnetic cur-
vature outside of the torus strongly depends on the
label of the field line, a.
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Fig.3.5.4 Contour of the eigenvalue w” in (8, ) plane at the
surface indicated by the arrow in Fig.3.5.1(b). [84]

The ballooning mode can be unstable even in the
Mercier stable region because it can be localized only
in the region with the unfavorable curvature[84]. In
this case, the high-n ballooning modes become unsta-
ble only in the high beta equilibrium which has a large
Shafranov shift and the turning surface in the plasma
column so as to reduce the local magnetic shear sul-
ficiently. The mode structure is strongly localized
around 5 = 6; because the secular term in [k |? is
amplified by the large Shafranov shift through the
factor of {V4| beyond n = 27 as shown in Fig.3.5.2.
As the local magnetic curvature has a strong depen-
dence on «, the eigenvalue also strongly depends on
a, ie., w? = *(¢,o,0;). As shown in Fig.3.5.4,
the topology of the level surfaces of unstable w? is
spheroid in the space of (¢, ¢, 6;). On the contrary,
since the eigenvalue does not depend on & in toka-
maks, ie., w? = w?(¢),8;), the level surfaces should
be cylindrical and the method of quantum condition
can be used to compose a global mode structure[76].

In the Mercier unstable region. there always ex-
ists the unstable high-n ballooning mode. This type
of the ballooning mode is obtained in the current-
less LHD equilibrinm with a broad pressure profile of
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Fig.3.5.5 Eigenfunction of the high-n ballocning mode along
the field line with {#x = 0,a = 0} in the strongly Mercier
unstable region of the LHD equilibrium with P = Fy(1 — ¢*)®
- [34]

P = Py(1 ~ 5*)*{84]. In this region, |k, |* need not
be so much modified for the destabilization of the
high-n ballooning mode as that in the Mercier stable
equilibria, because the average magnetic curvature is
already unfavorable along the field line. Therefore,
there can exist not only the mode strongly localized
in the region with the unfavorable local curvature as
is in the Mercier stable region, but also the mode
with extended structure along the field line which is
destabilized by the unfavorable averaged curvature
in the region as shown in Fig.3.5.5. The eigenvalue
of the latter mode is smaller than that of the for-
mer modes, because the eigenfunction passes both
the unfavorable and the favorable local curvature re-
gions. Thus, the dependence of the eigenvalues of
the latter modes on o is weak, while the eigenvalues
in the former modes strongly depend on o. Hence,
the level surfaces of the eigenvalue of the mode in
the Mericier unstable region present the two types of
topological structure in the (¥, «, 8;) space. That is,
there exist the level surfaces of small w? correspond-
ing to the mode with the extended structure along the
field line which would be continuous in o direction, or
nearly cylindrical, and the spheroidal structures with
large w? corresponding to the strongly localized mode
structure exist inside the continuous surface.

3.5.2 Global mode analysis

The eigenmode of eq.(3.58) is a quasimode not a
normal mode. A technique based on a quantum con-
dition which gives a relation between the quasimode
and the normal mode is established in the tokamak
configuration[76], where the eigenvalue is indepen-



dent of . In the heliotron configurations, however,
the unstable mode as a solution of eq.(3.58) is not
directly related to the global normal mode. There-
fore, it has been extensively studied by means of the
three-dimensional numerical codes how the unstable
mode obtained by the local mode analysis is related
to the global normal mode. Particularly, the anal-
ysis for the modes in the Mercier unstable region is
progressed.

As is seen in the previous section, the eigenvalue
w? of the local ballooning mode is a function of g,
a and 6, ie., w? = Aq,a,0;). Here, g is used for
the label of the magnetic surface instead of 3. In the
(g,,6:) space, the ray corresponding to 5 = const.
on the level surface of w? gives information about the
eigenvalue of the corresponding normal mode[77, 85}.
Employing the method of the characteristics, the ray
equations are given by

. 9A
x = ——9];%; (3.69)
., OX
i= 5 (3.70)
: gA 0
b = 9::% ~ 3 (3.711)

where the dot denotes the derivative with respect to
dummy time variable parameterizing the characteris-
tics.

The ray was traced in the LHD currentless equilib-
rium with P = Py(1—s%)% at By = 4%[85]. This equi-
librium has an Mercier unstable region in the plasma
column. Therefore, the level surface of w”® has an al-
most cylindrical structure in this region. Thus, the
ray trajectory seems to be wound around the cylin-
der as shown in Fig.3.5.6. This structure is similar
to the one in the axisymmetric plasma, and there-
fore, the quantum method in the tokamak ballooning
mode can be applicable. As the trajectory of the
ray is a periodic helical winding in the o axis, the
projection of the trajectory on the ¢-6; plane corre-
sponds to a rotation along a closed line. Here we
define IT = II{w?) as the average increase of « along
the ray for one rotation of the projected trajectory.
Noting that the toroidal periodicity has to be satis-
fied in the normal mode and that the eikonal S jumps
by m/2 according to the WKB method when the ray
passes each turning point, the relation

2N +1
2n

I{w?) = (3.72)
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Fig.3.5.6 The ray trajectory in (g, c,8%) space in the
Mercier-unstable LHD cquilibrium. [85]

is derived, where N and n are the radial and the
toroidal mode numbers, respectively. This relation
indicates that the eigenvalue of the normal mode cor-
responding to the unstable local ballooning modes of
which the level surface of w? has a cylindrical struc-
ture shows a discrete spectrum. In the case of the
spheroidal structure in the level surface, a continuum
band of the eigenvalue is obtained at the center of the
spheroid, which corresponds to the limit of n» = oco.
Figure 3.5.7 shows the solution of eq.(3.72) for N =0,
1 and 2.

In order to examine the validity of this method
the global modes were calculated with the TERPSI-
CHORE code in this three-dimensional equilibrium.
The eigenvalues are also shown in Fig.3.5.7 for the
comparison. In this figure, the three most unstable
eigenvalues are plotted for each n. In this calcula-
tion, the unstable modes were searched in the range
of 2 ~ n ~ 14, and 94 Fourier modes were provided
for the perturbation in the space of the poloidal and
the toroidal angles. It is easily seen that these three
most unstable modes correspond to the modes with
N =0, 1 and 2 obtained in the local analysis. The
agreement of the eigenvalues between the two meth-
ods becomes excellent for large » and N.

The effort to obtain the global mode corresponding
to the eigenvalue of which the level surface has the
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Fig.3.5.7 Comparison of WKB-ballooning growth rate
eigenvalue, —w?, {curves) with the TERPSICHORE results
{dots) plotted versus dominant torcidal mode number n for
the first three radial mode numbers, ¥ = 0,1,2. The dotted
horizontal line represents the n = oo continuum band defined
by fixed points of the ray equations. {85}

spheroidal structure in (¥,a,6;) space in the local
mode analysis were made with the CAS3D code in the
Mercier unstable region of the LHD configuration{86].
The unstable local mode with the spheroidal level
surface of the eigenvalue strongly depends on o be-
cause it is mainly driven by the localized magnetic
curvature in the helical ripples, and therefore, the
coupling between the Fourier components in the cor-
responding global mode with different toroidal mode
number should be guite strong. In the LHD config-
uration, since the rotational transform is almost Jess
than unity, many Fourier compenents with large n are
necessary in the calculation for the sufficient overlap
of the components with different n. That is, it is
essential to change the Fourler space of the perturba-
tion in the toroidal direction as well as in the poloidal
direction in order to examine the dependence of the
mode structure on «. In the CAS3D code, the pertur-
bation Fourier modes in the poloidal and the toroidal
directions are chosen so as to be distributed around
a given dominant mode with m = M, /n = N,.

The LHD equilibrium witk P = Fy(l — s)® at
By = 5.9% under the flux conserving constraint has
an Mercier unstable region around the ¢ = 3/5 sur-
face with the positive global shear d¢/ds > 0. Three
cases of the global mode in the equilibrium show
quite different properties attributed to the toroidal
mode coupling. The first case is for the small toroidal
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Fig.3.5.8 (a}) Profile of the Fouder comporents of the normal

displacement vector £ - V¢ with the dominant toroidal mode
number and {b} the corresponding contours of the perturbed
pressure P = —V P - £ on the vertically elongated poloidal
crogs section in the calenlation with (M, N;) = (5,3} and
My = 151. Here 7y denotes the average minor radius. [86]

mode numbers, n < M, where the number of toroidal
field period M is 10 in the LHD. Here M, = 5 and
N, = 3 are chosen and 151 Fourier modes{M,) are
distributed around the dominant mode for the pertur-
bation. Figure 3.5.8 shows the Fourier components of
the radial displacement, £ - Vs, and the level surfaces
of the perturbed pressure, P = —¢ - VP, of the most
unstable eigenmode. The dominant component of the
displacement is localized around the resonant surface,
and the mode coupling is quite weak in both the
poloidal and the toroidal direction. The contour of
the perturbed pressure spreads widely in the poloidal
direction. These properties of the mode structure in-
dicates that the mode is typical interchange mode



driven by the average component of the magnetic cur-
vature. In this case, the normalized eigenvalue of the
global mode s w? = —4.99 x 107>
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Fig.3.5.9 The same quantities as in Fig.3.5.8 with
(M,,N,) = (38,22) and M,, = 371. [86]

The second case is for the moderate toroidal mode
numbers, n ~ M. Here M, = 38 and N, = 22 are
chosen and 371 Fourier modes are distributed around
the dominant mode for the perturbation. The mode
structure is like a tokamak-like ballooning mode as
shown in Fig.3.5.9. The radial displacement is com-
posed of three groups of the Fourier modes with
different toroidal mode numbers, n = 22, n = 32
and n = 42. The structure results from the weak
toroidal mode coupling in the three-dimensional equi-
librium. Each group consists of many Fourier modes
with different poloidal mode numbers corresponding
to the strong poloidal mode coupling. Hence, the per-
turbed pressure is poloidally localized in the cuter
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region of the torus. It is noted that the dominant
group of the Fourier components with n = 32 is
still localized in the Mercier unstable region. In this
case, the normalized eigenvalue of the global mode is
w? = —1.80 x 1073
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Fig.3.5.10 The same quantities as in Fig.3.5.8 with
(M, N,) = (342,108) and M,, = 397. [86]

The last case is for the large toroidal mode num-
bers, n >> M. Here M, = 342 and N, = 198 are
chosen and 793 Fourier modes are distributed around
the dominant mode for the perturbation. As shown in
Fig.3.5.10, the radial displacement has a strong cou-
pling of both the poloidal and the toroidal modes. It
is composed of eight groups of the Fourier modes with
different toroidal mode numbers. Each group consists
of many Fourier modes with different poloidal mede
numbers corresponding to the strong poloidal mode
coupling as in the second case, however, couples each
other strongly. In this structure, the perturbed pres-



sure 1s localized not only in the outside of torus but
also in the top and the bottom region in the vertically
elongated cross section where the magnetic curvature
is locally unfavorable due to the three-dimensional
structure of the equilibrium. Therefore, the mode is
a ballooning mode peculiar to the three-dimensional
configuration. In this case, the normalized eigenvalue
of the global mode is w? = —6.32 x 1073.

In the points of the toroidal mode coupling and
the property of the localization of the mode struc-
ture, the former two cases correspond to the cylin-
drical structure in the level surface of the eigenvalue
in the local mode analysis and the last case to the
spheroidal structure. The tendency of the eigenvalue
in the global modes also agrees with the results in the
local mode analysis because the cylindrical level sur-
faces is located outside the spherical surfaces, which
spreads to the marginal stable region.

4 Comparison between Nu-

merical and Experimental
Results

In order to know the validity of the theory and
the numerical simulation, the comparison of the re-
sults with the experimental data is inevitable. Several
comparison shows that MHD theoretical analyses ex-
plain the experimental results well.

In the Heliotron DR plasma, good agreement in
the critical beta value were shown between the ex-
periments and the numerical calculations[87]. In the
vicinity of the maximum beta value, the fluctuation
of the soft-X ray signal grew in the plasma with small
toroidal current., This indicates that the critical beta
value was himited by the pressure driven instability.
Figure 4.1.1 shows the maximum beta value observed
in the experiments and the beta limit by the inter-
change mode given by the numerical calculation with
the KSTEP code as the function of the vacuum axis
position A,. In the calculation, the currentless equi-
librium with the pressure profile of P = Py(1 — ¥,,)?
is assumed where ¥, denotes the normalized equilib-
rium poloidal flux. The beta limit given by the nu-
merical calculation agrees well with the experimen-
tal data for the whole range of A,. When the net
toroidal current was induced in the plasma column
by means of the Ohmic coil, the stability was im-
proved as shown in Fig.4.1.1. The stabilizing mech-
anism can be explained with the theoretical results
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Fig.4.1.1 Experimentally obtained maximum {3} values
(closed triangles) restricted by pressure driven MHD
instabilities in currentless Heliotron DR plasmas versus the
magnetic axis shift. The critical {3} valucs calculated with
the KSTEP code are shown as dashed lines. The open
squares are the maxitnum (3} values obtained in stabilized
discharges by applying a small toroidal plasma current. [87]

of Sec.3.4.1. Even in the improved equilibrium with
respect to the ideal interchange mode, magnetic fluc-
tuations with high frequency were still observed{88].
They can be attributed to the resistive interchange
mode, because the resistive mode can be destabilized
in the region where the ideal mode is stable as dis-
cussed in Sec.3.3.1. The degradation tendency of the
critical beta value due to the interchange modes was
also observed in the Heliotron E plasma when the
plasma was shifted inward[7].

In the ATF experiments, the dependence of the
magnetic fluctuation amplitude on the beta value for
the various operation conditions is summarized in
Ref.[89]. In this case, the amplitude increases as the
beta value is increased up to {8) ~ 0.3%, however,
the amplitude decreases beyond the beta value. It
means that there exists the feature of the second sta-
bility in the ATT equilibria against the instability. It
is reported that this tendency of the second stabil-
ity is consistent with the Mercier criterion diagram
in the theoretical prediction.

In the case of the Heliotron E plasma, a sawtooth
crash was observed in the experiment and the mech-
anism of the phenomenon was explained precisely
by the non-linear simulation results[90]. The saw-
tooth crash shown in Fig4.1.2, was observed when
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Fig.4.1.2 Line integrated soft X-ray emissivity for the two
types of discharges, with and without application of ECH in
the inward-shifted Heliotron E plasma. In the case of addition
of ECH, the sawtooth ovscillations are suppressed. [90]

the plasma was shifted inward with the vertical field
control so that the rotational transform at the axis
should be slightly less than 0.5. In this case, the
surface with ¢ = 1/2 exists in the plasma column.

The position of the crash which is r/a ~ 0.15 in
the average radius corresponds to the + = 1/2 sur-
face, and the poloidal mode number was identified to
m = 2 with the technique of the tomography. The
sawtooth was suppressed by applying the additional
electron cyclotron resonance heating (ECH). In or-
der to know the mechanism of this phenomenon the
non-linear evolution of the fluctuation was simulated
numerically by using the reduced MHD equations in
the cylindrical geometry. These equations includes
the resistivity, the viscosity and the heat conductiv-
ity and are solved with an additional equation for the
evolution of the average pressure (P), given by,

P} _
ot

3 18 ( 8(P)
—g(ﬂfp)’f-‘g(?‘)*‘f-pgl;g (7‘ 3r ) s

(4.1)
where the bracket means the average in both the
poloidal and the toroidal directions, and S(r) is a
source term which 1s needed to simulate sawtooth
oscillations. The equilibrium was calculated by the
VMEC code with P = Fy(1 — ¥,,)*° under the cur-
rentless condition. As the beta value increases, the
resistive interchange mode with m = 4/n = 2 be-
comes unstable at first, but the mode saturates at a
low fluctuation level. When the beta value exceeds
the threshold value for the ideal interchange mode,
the m = 2/n = 1 mode is destabilized which results
in the sudden crash. Fig.4.1.3 shows the time evo-
lution of the average pressure gradient and the soft
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Fig.4.1.3 Time evolution of Al/Il and the local (at

r/a = 0.15) averaged pressure gradient for an initial
equilibrium with P = Fp(l ~ ¥, )*® in inward-shifted
Heliotron E configuration. A source term has been included
to simulate sawtooth oscillation. [90]

X-ray emissivity which is estimated by

AI _ fdIP®— [dIP
I~ japr

where fdl means the line integral across the plasma.
A good agreement of the sitvation of the sawtooth
crash can be seen between the experimental and the
numerical results, although the time evelution is ac-
celerated by employing a larger heating source term
S than the realistic value to save the computation
time. Thus, the simulation showed that the ideal in-
terchange mode triggers the crash rather than the
resistive mode as the mechanism of the observed saw-
tooth oscillation.

In the CHS plasma, the beta value was achieved
expertmentally which is higher than the critical beta
predicted theoretically[91]. Figure 4.1.4 shows the
Mercier unstable region corresponding to the high
beta experiments in the CHS. The equilibrium is
calculated with the VMEC code under the current-
less condition. The pressure profile observed exper-
imentally at (8) = 0.7% is used in the equilibrium
calculation. This diagram predicts that the inter-
change mode which is resonant at the¢ = 1/3 surface
becomes unstable and the RESORM code gives an
m = 3/n = 1 interchange instability with substan-
tial growth rate. On the confrary, the amplitude of
m = 3/n = 1 component in the magnetic fluctuation
was not considerable compared with m = 2/n = 1
in the experiment. Besides, the highest beta value
in the CHS experiments, (3) = 2.1%, was achieved.
It can be considered from these results that some
stabilizing effects worked on the interchange mode.

(4.2)



2 T * T T
: 'l ] |
Magnetic Well Boundary '!I oqe= |
5 15+ N5 N
& I
9 |
D
m 1% i
o |
g 1
¢ i
Z 0.5 i
1
|
0 !
0 1

Fig.4.1.4 Mercier stability diagram in CHS plasma. The
region surrounded by a thick solid line is Mercier unstable
region. The thin lines are contours of the level surface of Dy
with ADy = 0.2. [91]

The most plausible stabilizing effects are kinetic ef-
fects such as the finite Larmor radius effect. How-
ever, this effects are common in other heliotron plas-

mas in which the theory shows good agreements with .

the experimental data. Another candidate for the
stabilization is the effect of the dissipations such as
the viscosity and the heat conductivity. The CHS
plasma is strongly heated by the neutral beam injec-
tion. The substantial anisotropy in the pressure due
to the heating is observed which results in the strong
viscosity. Furthermore, the CHS plasma correspond-
ing to Fig.4.1 .4 attached to the vacuum chamber, that
is, the discharge was cartied out in the limiter con-
figuration with the wall. Thus, the impurity could
easily come into the core plasma from the wall mate-
rial which might enhance the heat conductivity across
the plasma as the result of the radiation loss. It is
known that such dissipation effects can stabilize the
interchange mode[92]. Since the precise qualitative
comparison has not been carried out, however, the
disagreement between the theory and the experiment
is still an open question.

5 Summary

In this review, we mainly focused on the three-
dimensional MHD equilibria and its linear stability
in heliotron plasmas. In this case, the interchange
mode is the most basic instability because the heli-
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cal windings which is necessary to generate confine-
ment magnetic field inherently create the unfavorable
curvature of the magnetic field line. This is clearly
shown by the term of |B — B|? in the expression of
the curvature term of the stellarator expansion. The
interchange mode is strongly influenced by the change
of the magnetic configuration, particularly, the hori-
zontal pesition controlled by the vertical field. How-
ever, it is difficult to achieve a favorable configuration
both for the MHD stability against the interchange
mede and for the confinement of the particles with
respect to the orbit loss. Thus, it has been contin-
ued to study the stability boundary with respect to
the interchange mode for various configurations and
improve the compatible configuration for both the
stability and the confinement. Simultaneously, the
theoretical investigation for the feature of the inter-
change mode itself has been progressed. It is one of
the great results of such investigation that the inter-
change mode becomes to show a ballooning feature
due to the three-dimensional local magnetic curva-
ture as the wave length decreases.

The effects of the net toroidal current on the MHD
equilibrium and the stability has been studied ex-
tensively, because such net current can flow iz the
plasma automatically or can be induced artificially.
As the net toroidal current varies the poloidal mag-
netic field directly, it affects the stability of the in-
terchange mode. The effects strongly depend on the
direction of the current through the change of the
self-stabilization at finite beta. On the other hand,
the current can cause the current driven mode. If the
current density profile is peaked at the magnetic axis,
as is in the case of the Ohmic current, an equilibrium
involving two resonant surfaces with the same rota-
tional transform is obtained. In this case, the internal
kink mode can be unstable at low beta. When the
self-consistent bootstrap current flows in the plasma
column, the external kink mode is destabilized at the
beta where the sufficient current flows. Another type
of external mode can be found also in the current-
less equilibrium at high beta, which is driven by the
Pfirsch-Schliter current.

The future work of the theoretical MHD study in
the heliotron configuration which will be needed to
understand the experiments more precisely is classi-
fied into two directions. One is the development of
the analysis within the framework of the MHD and
the other is the extension of the MHD model. In both
cases, the development of the three-dimensional anal-



ysis will be important because the computer capacity
has been and will be remarkably advanced.

As for the development within the MHD, the three-
dimensional linear stability analysis for the resistive
interchange mode as well as the ideal one shouid
be established. The resistive stability in heliotron
configurations has been studied only with the two-
dimensional technique based on the stellarator ex-
pansion or other averaging methods. It wili be fruit-
ful to investigate the three-dimensional behavior of
the resistive modes. Such study may reveal a spe-
cial property of the resistive modes inherently in the
three-dimensional configuration as is in the case of
the ideal interchange mode. For the ideal stabil-
ity, the three-dimensional codes such as the CAS3D
and the TERPSICHORE codes are developed, how-
ever, the technique in the codes cannot be utilized
in the development of the resistive stability code be-
cause they employ the energy principle. The numer-
ical scheme based on the full MHD equations or the
three-dimensional reduced MHD equations is needed
for the study of the resistive instability. Some mod-
els of three-dimensional reduced equations has been
proposed recently[93, 94].

Furthermore, it would be desirable to develop non-
linear codes which study how much the linear insta-
bility deteriorates the plasma confinement actually.
One-dimensional codes are used in the analysis of the
mechanism of the destruction of the confinement re-
gion, however, the application range is limited. The
toroidal effect has to be included in the non-linear
studies for the small or medium aspect ratio plasma.
Concerning with the achievement of 2 high # plasma
in experiments, it is crucial whether the linear insta-
bility results in the global destruction or it locally
saturates within a small level. Therefore, it would
be important to generate a stability criterion so as to
give the information of the the non-linear behavior of
the mode and to know how well the linear stability
criterion can predict the total situation of the plasma.

The analysis of the plasma with anisotropic pres-
sure profile and plasma flow is also important in the
MHD study. Although the study of these effects has
been proceeded, they are limited in the one- or two-
dimensional configuration. To investigate such effect
in the heliotron plasma, it would be needed at first to
develop a numerical code which calculates the three-
dimensional MHD equilibrium consistently including
the effects of the anisotropic pressure and the plasma
flow.
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The most unportant extension of the MHD model
is the connection with the neoclassical transport the-
ory. As one of the success in such extension, the self-
consistent boolstrap current s incorporated in the
three-dimensional equilibrium. However, the appli-
cable plasma is limited because it is assumed that
the plasma consists of the protons and the electrons
and the effects of the impurity are neglecied. Hence,
the scheme should be modified to treat the plasma
with Z.;; > 1 to analyse the experimental data
closely. Furthermore, not only the bootsirap current
but another neoclassical toroidal current can flow in
the plasma. Particulasly, in the case of the strong
NBI heating, substantial beam current may flow. It
has a different profile of the current density from the
bootstrap current. Therefore, the scheme including
the self-consistent beam current should also be es-
tablished.

Including the kinetic effects are also the future
problem in the three-dimensional MHD analysis. The
finite Larmor radius effect is one of the most impor-
tant issues in the MHD stability, particularly in the
interchange mode. Because it is extremely localized
around the rational surfaces near the stability bound-
ary, it is expected that the effect would improve the
stability. Thus, the development of the numerical
code to study the effect on the instabilities in a three-
dimensional equilibrium would be desirable. Another
kinetic effect plays an important role also in the anal-
ysis of Alfvén eigenmodes. In heliotron configura-
tions, not only the toroidicity induced Alfvén eigen-
modes but also the helicity induced Alfvén eigen-
modes are theoretically predicted[95] though they
were not picked up in this review. However, the anal-
ysis treats the behavior of the mode only in the re-
gion of the stable eigenvalue. It would be interesting
to study how such eigenmodes are destabilized by in-
cluding the kinetic effects in the heliotron configura-
tions as 1s done in tokamaks.
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