
Adaptive Mesh Refinement (AMR) technique can 
provide efficient numerical calculation by adapting fine 
cells to regions where higher numerical resolution is 
required. However, it is generally difficult for users to 
implement the AMR technique in their generic simulation 
programs which use uniform cells. Meanwhile, to 
investigate multi-scale phenomena in space plasma 
environment including plasma kinetic effects, we have been 
developing a new electromagnetic Particle-In-Cell (PIC) 
code called PARMER by incorporating the AMR technique 
[1,2]. In the present study, based on the numerical technique 
on AMR we adopted in PARMER, we started to develop a 
computational framework for blocked-structured AMR 
simulation by which we can easily convert a generic 
uniform-cell simulation program to the one with the AMR 
treatment [3].  

In the framework development, we decided to adopt 
the block-structured AMR because of better portability than 
other AMR-structures. In the block-structured AMR, 
regions required for the AMR treatment in the simulation 
domain have a self-similar structure. The self-similar block-
structured domains for AMR are managed in a fully 
threaded tree (FTT) data structure which allows recursive 
refinement on a block-by-block basis. Each block consists 
of a domain formed with the fixed number of cells with 
uniform cell size. A block in a different level of refinement 
in the FTT structure has different cell size keeping the same 
number of cells. For instance, in one level higher, the cell 
size becomes half. In each block, we can incorporate the 
same uniform-cell simulation program of our interest and 
independently perform the simulation. Since each block has 
a common domain with the same number of cells because of 
self-similarity, what we need to consider is the cell size in 
each block depending on the refinement level which is given 
in the FTT structure. 

A simple example is shown in Figure 1 in which each 
block has 4×4 cells and the simulation domain consists of 
4×4 base-blocks. We call a block with the coarsest cells the 
base-block. It should be noted that the number of cells in the 
refined block is the same as that in base-block because of 
self-similarity although the cell size becomes half. The 
number of cells in each block and the number of base-block 
consisting of the whole simulation domain can be initially 
set as input parameters.  

We can easily modify a generic uniform-cell 
simulation program into an AMR one by inserting it into our 
framework. Since the framework can handle the hierarchical 
relation among the blocks with the FTT structure, what the 

users basically have to prepare is the outer boundary 
condition for the entire simulation space, the main routine 
for calculation in each block, and a criterion for the cell 
refinement. We need to prepare these three parts in the 
Fortran language. Each block domain has a buffer region 
which surrounds the physical domain of the block. Through 
the buffer region, data of adjacent blocks are exchanged for 
the boundary calculation with finite difference methods. By 
these systematic connections among blocks, a simulation in 
a whole domain is efficiently performed. 

In parallelizing the code, we use the domain 
decomposition method with which we uniformly separate 
the whole simulation region into subdomains with the 
number of processes available for the parallel calculation. In 
parallelizing the block-structured simulation, each divided 
subdomain consists either of a single block or a group of 
blocks depending on the memory size of each process.  In 
the domain decomposition method we need to exchange the 
boundary data of each subdomain between adjacent 
processes. The data exchange between processes is handled 
with MPI and this treatment is also supported in the current 
block-AMR framework. From this point of view, the 
developed framework is also useful for users to parallelize a 
code with the domain decomposition method using multiple 
processes even if there is no need to use the AMR function 
in the simulation. 

By taking a two-dimensional advection equation as an 
example, we performed a test simulation of a square-shaped 
waveform propagation by using the developed AMR 
framework. In the waveform propagation, we could confirm 
that high resolution is achieved adaptively and locally at the 
steep gradient of the waveform by the creation of new 
blocks with fine cells. We also confirmed that the 
computation resources used for this test simulation are 
reduced almost by half in comparison with those used in a 
uniform cell simulation for the present case.  
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Fig. 1. Example of block configuration in two-dimensional 

domain. In this case, a block has 4×4 cells. 
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