
Adaptive Mesh Refinement (AMR) technique can
provide efficient numerical calculation by adapting fine
cells to regions where higher numerical resolution is
required. However, it is generally difficult for users to
implement the AMR technique in their generic simulation
programs which use uniform cells. Meanwhile, to
investigate multi-scale phenomena in space plasma
environment including plasma kinetic effects, we have been
developing a new electromagnetic Particle-In-Cell (PIC)
code called PARMER by incorporating the AMR technique
[1,2]. In the present study, based on the numerical technique
on AMR we adopted in PARMER, we started to develop a
computational framework for blocked-structured AMR
simulation by which we can easily convert a generic
uniform-cell simulation program to the one with the AMR
treatment [3].

In the framework development, we decided to adopt
the block-structured AMR because of better portability than
other AMR-structures. In the block-structured AMR,
regions required for the AMR treatment in the simulation
domain have a self-similar structure. The self-similar block-
structured domains for AMR are managed in a fully
threaded tree (FTT) data structure which allows recursive
refinement on a block-by-block basis. Each block consists
of a domain formed with the fixed number of cells with
uniform cell size. A block in a different level of refinement
in the FTT structure has different cell size keeping the same
number of cells. For instance, in one level higher, the cell
size becomes half. In each block, we can incorporate the
same uniform-cell simulation program of our interest and
independently perform the simulation. Since each block has
a common domain with the same number of cells because of
self-similarity, what we need to consider is the cell size in
each block depending on the refinement level which is given
in the FTT structure.

A simple example is shown in Figure 1 in which each
block has 4×4 cells and the simulation domain consists of
4×4 base-blocks. We call a block with the coarsest cells the
base-block. It should be noted that the number of cells in the
refined block is the same as that in base-block because of
self-similarity although the cell size becomes half. The
number of cells in each block and the number of base-block
consisting of the whole simulation domain can be initially
set as input parameters.

We can easily modify a generic uniform-cell
simulation program into an AMR one by inserting it into our
framework. Since the framework can handle the hierarchical
relation among the blocks with the FTT structure, what the

users basically have to prepare is the outer boundary
condition for the entire simulation space, the main routine
for calculation in each block, and a criterion for the cell
refinement. We need to prepare these three parts in the
Fortran language. Each block domain has a buffer region
which surrounds the physical domain of the block. Through
the buffer region, data of adjacent blocks are exchanged for
the boundary calculation with finite difference methods. By
these systematic connections among blocks, a simulation in
a whole domain is efficiently performed.

In parallelizing the code, we use the domain
decomposition method with which we uniformly separate
the whole simulation region into subdomains with the
number of processes available for the parallel calculation. In
parallelizing the block-structured simulation, each divided
subdomain consists either of a single block or a group of
blocks depending on the memory size of each process. In
the domain decomposition method we need to exchange the
boundary data of each subdomain between adjacent
processes. The data exchange between processes is handled
with MPI and this treatment is also supported in the current
block-AMR framework. From this point of view, the
developed framework is also useful for users to parallelize a
code with the domain decomposition method using multiple
processes even if there is no need to use the AMR function
in the simulation.

By taking a two-dimensional advection equation as an
example, we performed a test simulation of a square-shaped
waveform propagation by using the developed AMR
framework. In the waveform propagation, we could confirm
that high resolution is achieved adaptively and locally at the
steep gradient of the waveform by the creation of new
blocks with fine cells. We also confirmed that the
computation resources used for this test simulation are
reduced almost by half in comparison with those used in a
uniform cell simulation for the present case.

1) Usui, H. et al.: Procedia Computer Science 4 (2011) 2337.
2) Usui, H. et al.: Plasma and Fusion Research 8 (2013)
2401149.
3) Usui, H. et al.: Procedia Computer Science 29C (2014)
2351.

Block Cell
Self similar block
• Cell size becomes half
• The same number of cells

Fig. 1. Example of block configuration in two-dimensional

domain. In this case, a block has 4×4 cells.

416

§14. Development of a Multi-Scale Simulation
Code with Adaptive Mesh Refinement and
its Application to Conventional Codes

Usui, H., Nagara, A. (Graduate School of System
Informatics, Kobe Univ.),
Nunami, M.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Institute for Fusion Science (NIFS-Repository)

https://core.ac.uk/display/72823767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

