§25. Evaluation of Energy Confinement Time and Heating Efficiency in ICRF Heated Plasma

Torii, Y. (Nagoya Univ.)

The energy confinement time of the LHD plasma has been observed to be 1.5 times larger than the International Stellarator Scaling (ISS95)¹⁾. In the third cycle, ICRF modulation experiment was carried out to evaluate the energy confinement time, τ_E , in the diffrent method.

In this experiment, the radiated RF power from antenna, P_{ant} , was modulated in the following way,

$$P_{\text{ant}} = P_{0\text{ant}} + |P_{1\text{ant}}| \sin \omega t$$

where ω , P_{0ant} and P_{1ant} are modulation angular frequency, an average and a modulated RF power from antenna, respectively. Then the modulated plasma stored energy W_p is

$$W_p = W_{p0} + |W_{p1}|\sin(\omega t + \delta)$$

where δ , W_{p0} and W_{p1} are the phase difference in the wave forms between the P_{1ant} and the W_{p1} , an average and a modulated plasma stored energy, respectively. The absorbed power by the plasma, P_{abs} , is calculated to be ηP_{ant} by introducing the heating efficiency η . The τ_E is a function of the modulated frequency and δ etc. The heating efficiency η is calculated with W_{p1} , P_{1ant} , ω and δ etc.

We considered three models to analyze τ_E assuming different dependence of the energy confinement time on the various parameters such as the RF heating power and the plasma temperature, T; i.e. $(a)\tau_E = \text{const.}^{2)}$, $(b)\tau_E = AP_{abs}^{\alpha}$ and $(c)\tau_E = BT^{\beta}$. Assuming $W_{p1} \ll$ W_{p0} and $P_{1abs} \ll P_{0abs}$, we substitute three types of τ_E , $P_{1ant} = |P_{1ant}| \sin \omega t$ and $W_{p1} = |W_{p1}| \sin(\omega t + \delta)$ to the following equation,

$$\frac{dW_{p1}}{dt} = \eta P_{1\text{ant}} - \frac{W_{p1}}{\tau_E}$$

using of Fourier transformation and linear approximation, τ_E is calculated as shown on Table I, which shows calculation results of τ_E s and η s. Hereafter, τ_E and η calculated by modulation method are written with superscript M:i.e. τ_E^M and η^M .

To evaluate α , β in the case of model (b) and (c), we use the ISS95 scaling law¹⁾,

$$\tau_E^{\text{ISS95}} = 0.079 a^{2.21} R^{0.65} P^{-0.59} \overline{n_e^{0.51}} B_t^{0.83} (\iota/2\pi)_{2/3}^{0.4}$$

Then we assume $\alpha = -0.59$ and $\beta = -1.44$.

From experimental result (Fig.1), we calculated τ_E^M and η^M , and compared them with τ_E^P and η^P caluculated with usual method,

$$\begin{split} \eta^P &= \frac{(dW_p/dt)_{t_{\rm off}=0} - (dW_p/dt)_{t_{\rm off}=0}}{P_{\rm ant}} \\ \tau_E{}^P &= \frac{W_p}{\eta^P P_{\rm ant}} \quad (\text{at steady state, } dW_p/dt=0) \end{split}$$

Table II shows $\tau_E{}^M/\tau_E{}^P$ s and η^M/η^P s of each three models. It is found that $\tau_E{}^M$ s of any model (a)-(c) didn't have an agreement with $\tau_E{}^P$ but that η^M s of model (a) and (c) shows good agreement with η^P .

To have a good agreement with τ_E^P , changing β , τ_E^M of model (c) can be fixed. In this experiment, if we assume $\beta = -0.75$, τ_E^M has a good agreement with τ_E^P . In ISS95 the dependence of P on τ_E corresponds to $\tau_E \propto P^{-0.45}$.

In this shot, it turned out to be an effective method of τ_E to calculate it from the phase difference between W_p and P on power modulation experiment. And we also calculate η for another method. The model (c) shows a good agreement with actual τ_E and η . So τ_E should be explained as a function of temperature.

Table I: Three models of $\tau_E{}^M$ s and η^M s

model	$ au_E{}^M$	η^M
(a)	$\tan \delta$	$\omega_1 \sqrt{1 + \frac{1}{1 + \frac{ W_{p1} }{1 + \frac{1}{1 + $
	ω	$V = \tan^2 \delta P_{1ant} $
(b)	$ an \delta$	$\frac{1}{1+1} = \frac{1}{ W_{p1} }$
	ω	$\alpha + 1 \stackrel{\omega}{\bigvee} \stackrel{1}{\longrightarrow} \tan^2 \delta P_{1ant} $
(c)	$(1 - 2) \tan \delta$	$1 W_{p1} $
	$(1-b) - \frac{\omega}{\omega}$	$\omega \sqrt{1+\frac{1}{\tan^2 \delta}} \frac{1}{ P_{1ant} }$

Fig.1: Time evolutions of W_p and P_{ant} . Modulation frequency is 4Hz. (B = 2.75T, RF frequency= 38.47MHz)

Table II: Three models of $\tau_E{}^M/\tau_E{}^P$ s and η^M/η^P s in the case of $\alpha = -0.59$ and $\beta = -1.44$

model	$ au_E{}^M/ au_E{}^P$	η^M/η^P
(a)	~ 0.5	$\sim 1.0 (\mathrm{good})$
(b)	~ 0.5	~ 2.0
(c)	~ 1.4	$\sim 1.0(\text{good})$

Reference

1) U.Stroth, et al., Nucl. Fusion **36**, 1063(1996)

2) T.Shoji, et al., Institute of Plasma Physics Reserch Report, Nagoya, IPPJ-795(1986)