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The theory on transport process of the plasma in the 
toroidal configuration is based on the assumption that the 
fundamental plasma properties are described by several 
averaged quantities such as number density, temperature, and 
so on, which are considered to be functions of magnetic 
surfaces. This assumption implies that the plasma particles 
stay on the magnetic surface without collision, or more 
generally, the deviation of the orbit from the magnetic 
surface is much smaller than the characteristic length of the 
vanatlOn. In some experimental situations, however, the 
orbit of some particles deviates significantly from magnetic 
surfaces; the inclusion of such effect into the transport theory 
remains as an important issue of the theory. 

In the collisionless limit, the distribution function is 
constant along the particle orbit in the phase space. 
Therefore the distribution function may be considered 
function of constant. of motion, i.e. energy, magnetic moment, 
and the longitudinal adiabatic invariant. However, the 
statement that in the limit of low collisionality the 
distribution function is described only by the constant of 
motion is not correct in the toroidal plasma 

In the toroidal configuration there are several kinds of 
particles with orbit having the different topology. Since the 
collisional effects are described by the second order 
differential operator in the velocity space, continuity of the 
distribution function and its derivative with respect to the 
energy and magnetic moment is the requisite. The both 
requirements cannot be satisfied at the boundary of the 
different orbit topology. This means that, even if the 
collision frequency is small, the distribution function is not 
constant along the particle orbit in the certain part of the 
phase space, where the collisionality is effectively enhanced. 

We consider the helical torus with toroidal period Nand 
the rotational transform per period is assumed to be small: 
t/ N «1. The motion of charged particles in such systems 
are described by using the longitudinal adiabatic invariant J. 
The representation of the adiabatic invariant differs for 
passing particles and ripple-trapped particles, due to the 
difference of the orbit topology. 

As we consider the small Larmor radius case, the motion 
of the passing particles is regarded as lying upon the 
magnetic surface. The distribution function of the passing 
particles is essentially local Maxwellian, the density and the 
temperature are functions ofthe magnetic surface. 

The characteristic time for the ripple-trapped particles is 
longer than that of passing particles. When the excursion 
time of the trapped particles (J)T -I is much longer than the 
effective collision time V -', the effect of the finite orbit 

'Jf 
deviation is not essential, and the flux proportional to veJf - , 

is found. The opposite limit is the most interesting case, and 
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it is the main object of this study. 
The main body of the ripple-trapped particles is 

considered as collisioniess, and the distribution function fT 

is expanded as 

fT = F(O) + (vi (J)T )F(!) + ... (1) 

where F (O) = F(O) (J, A), and A == J1l3o / E is the pitch angle. 
Choosing an action variable H = H (J, A), we expand the 

distribution function as 

F(O)(H,A) = ~(O\H) + F;(O)(H,A) + ... (2) 

with respect to some small parameter. Such an expansion 
may not be validated unless the action variable H is properly 
chosen. Since the orbit has different topology depending on 
the presence of transition point, the choice of the variable H 
has to be made separately for each case. 

Suppose the orbit curve J (1jI, e; A) = const. crosses the 
curve at the transition points (1jIt' ± et ). At the points, the 
distribution function of ripple-trapped particle is equal to that 
of passing particles. If we choose as 

H = 1jI( (J, A), (3) 

then we have 

~(O) (H) = fo (1jI), (4) 

When the collisionless orbit has no transition point, the 
action variable H is chosen so that the coefficients before the 
derivative with respect to H in the collision operator is small. 
If the curve H = constant crosses the boundary curve with the 
region with transition points, the function ~'VJ (H) is 
determined from the continuity condition at the boundary. 

The transport flux for the mono-energetic particles is 
obtained by the integral 

r = f d e f d AF(l) ~ aJ . (5) 
e ae 

The integral is carried over the fixed magnetic surface. If 
we consider the case that the helical ripple is small, the part 
of the ripple-trapped particle with transition gives the main 
contribution for the transport flux. The integration with 
respect to e is changed to that with respect to the action 
variable H, which is essentially the magnetic surfaces. 

The transport flux across the magnetic flux can be 
obtained in the integral form as 

'I' afo r = J d 1jI'V J1jI, 1jI.)-
'l'L a1jl. 

'I' a2 fo 
+ Jd1jl'V 2(1jI,1jI.)--2· 

'l'L a1jl. 

(6) 

Thus, the transport flux cannot be expressed by single 
coefficient. 


