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We observed relatively high frequency magnetic fluc-
tuations with high coherence in co-injected NBI heated plas-
mas in CHS. The observed frequencies change in proportion
to the Alfven velocity. The mode amplitude obviously in-
creases with the increase in NBI power. Therefore these ob-
served magnetic fluctuations are thought to be the TAE driven
by energetic ions of NBI[1]. In order to study these magnetic
fluctuations more in detail, the movable magnetic probe array
was inserted into the plasma up to the radial position of
<r>/<a>~0.8[2].

Figure 1 shows an typical example of the power spec-
tral density of the TAE magnetic fluctuations. Usual Mirnov
probes show that the poloidal and toroidal modes of these two
fluctuations are different,that is, n=1 for the lower frequency
component and n=2 for the higher one. However, we cannot
distinguish the toroidal number n from the number which 8
added to n makes, that is, n+8, because four probes are ar-
ranged in the toroidal direction every 45 degrees. On the other
hand, the poloidal mode numbers for the lower and higher fre-
quency components are determined to be m~2 and m~4, re-
spectively, from the poloidal array of Mirnov probes, where it
is assumed to be m<20.

We have calculated the Alfven continua in a cylindri-
cal plasma for this experimental condition. If the lower fre-
quency component has the toroidal mode number n=1 and po-
loidal mode number m~2, this component corresponds to the
TAE excited around the gap generated through m=2 and m=3
mode coupling,. On the other hand, if this component has tor-
oidal mode number n=9, the TAE will be produced through
poloidal mode coupling of modes with higher mode number of
m>20.

The poloidal magnetic fluctuations having the poloi-
dal mode number m exhibit the following radial variation out-
side the LCFS where it is assumed to be current-free,
BOm=mAmr- M+ 1)[ 1+(r/b)2m],
where b is the radius of a conducting wall. The radial profile
of the observed magnetic fluctuations is shown in Fig.2, to-
gether with the predicted radial variations for m=2, 4 and 22.
In the region outside LCFS the profile of lower frequency
component fits well with the calculated variations of m=2
mode and higher one does for m=4. Radial variations of both
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fluctuations, however, deviate considerably from the varia-
tions of m=22 mode. Taken into account mode coupling in
TAE as discussed above, the toroidal mode numbers of the
lower and higher components are identified to be 1 and 2, re-
spectively.

The mode numbers of the observed TAE are suc-
cessfully determined by combination of the radial profiles of
fluctuations obtained with the movable probe array and a set
of poloidal and toroidal array of Mirnov probes.
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Fig. 1  An example of the power spectral density of the
TAE magnetic fluctuations,.
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Fig. 2 Radial variations of the TAE magnetic fluctuations.

The curves without data points indicate the calculated radial
variations for m=2, 4 and 22, respectively.
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