## § 9. Heat Pulse Propagation Study of Annular Crash in CHS

## Takagi, S., Toi, K., CHS Group

Perturbative transport experiments have been carried out in many tokamak plasmas using the temperature or density perturbation induced by the q = 1 sawtooth crash. In those experiments, the incremental electron heat diffusivity which is the diagonal element of the transport matrix was determined. However, the analysis is limited to a region outside the q = 1 radius. On the other hand, the heat and density pulses propagate both inside and outside the q = 2 radius due to the q = 2 annular crash. It is interesting from the viewpoint of the transport studies. We have investigated transport processes of q = 2 annular crash using a equation of electron temperature perturbation on an appropriate initial condition.

We use the simple diffusion equation regarding electron temperature perturbation expressed as follows:

$$\frac{3}{2}a^2n_{\rm e0}\frac{\partial\tilde{T}_{\rm e}}{\partial t} = \frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho n_{\rm e0}\chi_{\rm e}\frac{\partial\tilde{T}_{\rm e}}{\partial\rho}\right),$$

where  $\chi_e$  is the electron heat diffusivity. The initial condition of  $\tilde{T}_{e}(\rho, t)$  expected to describe the annular crash is illustrated by the thick solid curve in Fig.1(a).  $\rho_s$  is the q = 2 inversion radius.  $\rho_{m1}$  and  $\rho_{m2}$  are the "inner" and "outer" mixing radii. For the conservation of total heat content, we must satisfy  $\int_0^1 \tilde{T}_e(\rho, 0) \rho d\rho = 0$ . A simulation results for the annular crash are shown in Fig.1. As can be seen from Fig.1(a), the heat pulse propagates both inward and outward from the crash layer at  $\rho \simeq 0.45 - 0.55$ . The change in SX profile  $I_{cal}(\rho_{tan}, t)$  obtained by the lineintegration of local SX emissivity reconstructs the nature of the annular crash in the experimental results (Fig.1(b)). For rough estimation of  $\chi_e$ , we compare the arrival time of SX pulse peak  $t_p$  between experimental data and numerical one for various  $\chi_e$  (uniform in space) in Fig.2(a). It should be noted that  $t_{p}$  in the experimental data around the q = 2 rational surface located on  $\rho_{tan} \simeq 0.5$  is fairly long. This indicates the possibility for the reduction of  $\chi_e$ around the q = 2 rational surface. On the other hand,  $\chi_{\rm e}$  is thought to be  $1.0 - 2.0 \,{\rm m}^2/{\rm s}$  in the central region of  $\rho_{\text{tan}} \leq 0.3$ . Figure 2(c) shows the comparison of measured SX pulses with the best numerical fits, where  $\chi_e$  profile shown in Fig.2(b) is used in calculation. The fitted data except neighborhood of the rational surface agree well with the experimental data. On the other hand, the discrep-

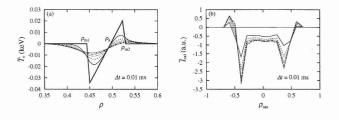



Figure 1 (a) Temporal evolutions of  $\tilde{T}_{\rm e}(\rho, t)$  due to the annular crash. (b) Temporal evolutions of  $\tilde{I}_{\rm cal}(\rho_{\rm tan}, t)$ . For these calculations,  $\rho_{\rm m1} = 0.45$ ,  $\rho_{\rm s} = 0.5$ ,  $\rho_{\rm m2} \simeq 0.53$  and  $\chi_{\rm e} = 1.0 \,{\rm m}^2/{\rm s}$ , respectively.

ancy between measured data and numerical one is large around the rational surface. The numerical data near the rational surface is sensitive for the location and width of the initial  $\tilde{T}_{\rm e}$  profile. It is difficult to estimate initial  $T_{\rm e}$ profile due to the limitation of the spatial resolution of the SX signals ( $\delta \rho \simeq 0.1$ ). The electron diffusivity profile which gives the best numerical fits in Fig.2(b) suggests the formation of ITB around the q = 2 rational surface. However, the electron temperature profile does not support the possibility of the formation of the ITB. Moreover, the obtained  $\chi_e$  from the heat pulse propagation analysis is almost  $\chi_e \simeq 1.0 \,\mathrm{m}^2/\mathrm{s}$  except q = 2 layer and is smaller than that expected from the equilibrium transport analysis  $\chi_{pb}$  $(2.0 - 5.0 \text{ m}^2/\text{s})$ . The SX signal depends on the electron density, impurity levels and electron temperature. These contribution may slow down the radial propagation of the SX pulses.

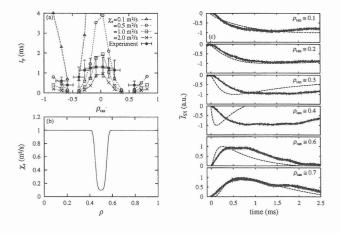



Figure 2 (a) Comparison of the arrival time of SX pulse between experimental data and numerical data ( $\chi_e = 0.1, 0.5, 1.0 \text{ and } 2.0 \text{ m}^2/\text{s}$ ). (b) The electron diffusivity  $\chi_e$  which gives the best numerical fits. (c) SX signals at various radial positions (solid curve), compared with the best numerical fits (broken curve).