§15. Studies on Advanced Superconductors for Fusion Device

Tachikawa, K. (Faculty of Engr., Tokai Univ.)

i) Fabrication of New Nb₃Sn Superconductors for High-Field Use

The bronze-processed Nb₃Sn with small amount of Ti addition is being widely used high-field for generation, however. a superconducting magnet capable of generating fields over 20T at 4.2K has not yet been realized. A new process to fabricate Nb₃Sn conductor has been developed starting from Nb₆Sn₅ intermediate compound powder¹⁾. The Nb₆Sn₅ fine powder can be synthesized by the melt diffusion process of Sn using Nb and Sn powders. The Nb₆Sn₅ intermetallic compound powder is mechanically mixed with Nb powder, and then tape conductors are fabricated using mixed powder of Nb/Nb₆Sn₅ encased in a Ta tube. The fabrication can be performed without intermediate annealing. Fig.1 shows the cross-section of the specimen with outer layer of Cu stabilizer.

Fig.1. Cross-section of the present Nb₃Sn specimen.

The upper critical field Bc₂ of present Nb₃Sn reaches 24.7T at 4.2K, which is nearly 5T higher than that of bronze-processed pure Nb₃Sn. The normal state resistivity ρ_n of the present Nb₃Sn is about three times larger than that of bronze-processed Nb₃Sn which may be account for the high Bc₂ in the present Nb₃Sn²². In this study the effect of small amount of Ge addition to the Nb₃Sn conductor fabricated by the new process has been studied³. The Ge is added to Nb₆Sn₅ compound at the time of the melt diffusion.

The SEM structures taken on the crosssection of the specimen indicate that the small amount of Ge addition appreciably reduces the grain size of Nb₃Sn after the heat treatment. Fig.2 illustrates the critical current I_c and critical current density J_c at high magnetic fields for different specimens heat treated at quoted conditions. The Ti addition to Nb₃Sn improves high-field performance as described in the last report. The small amount of Ge addition produces more significant enhancement in J_c at high fields than the Ti addition does. The optimum amount of Ge addition is found to be 0.5-1.0wt%. The composition slightly richer in Sn, i.e. Nb_{2.9}Sn, is more favorable to obtain high-field improved performance. The composition slightly richer in Sn yields the increase in ρ_n value of Nb₃Sn. The significant enhancement in J_c at high-fields seems to be attributed to the grain refinement of Nb₃Sn by the Ge addition described above. A J_c value of over 30000A /cm² has been realized at 21T and 4.2K by the Ge addition. The present result is much encouraging for the development of Nb₃Sn conductor capable of generating fields over 20T at 4.2K.

Fig.2. I_c and J_c at 4.2K in fields of 21, 22 and 23T for different specimens. NS:Nb₃Sn.

ii) Investigation on the Present Status of Advanced Metallic Superconductors other than Nb_3Sn .

A comprehensive report on the development of Nb₃Sn was published as NIFS-MEMO-20 in last year⁴⁾. Present study covers the progress so far achieved in the research and development of advanced metallic superconductors other than Nb₃Sn⁵⁾. Among different A15 crystal-type compounds, Nb₃Al has been fabricated into cables with large current-carrying capacity referring its smaller sensitivity to mechanical strain than Nb₃Sn. Other high-field A15 superconductors, e.g. V₃Ga, Nb₃Ge and Nb₃(Al,Ge), have been also fabricated through different novel processes. Meanwhile, B1 crystal-type NbN and C15 crystal-type V₂(Hf,Zr) superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo₆S₈ compound has gained much interests due to its extremely high Bc₂ value. In addition, this study includes the recent progress in ultra-fine filamentary Nb-Ti wires for AC use, and that in Nb-Ti/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals

relating to fusion superconducting magnet are also included. This report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation.

References

- Tachikawa, K., Natuume, M., Kuroda, Y. and Tomori, H., Cryogenics, <u>36</u> (1996) pp 113-117.
- Tachikawa, K., Natuume, M., Tomori, H. and Kuroda, Y., High-field Nb₃Sn Superconductors Prepared through a New Route, Adv. Cryogenic Engineering, <u>42</u> (1996) pp 1359-1367.
- Tachikawa, K., Kuroda, Y., Tomori, H. and Ueda, M., Improved High-field Performance in Nb₃Sn Conductor Prepared from Intermediate Compound, to be published in IEEE Trans. Appl. Superconductivity, vol.7 (1997).
- Tachikawa, K. and Yamamoto, J., Research Report NIFS-MEMO-20 (March, 1996) pp 1-77.
- 5) Tachikawa, K., Yamamoto, J. and Mito, T., Research Report NIFS-MEMO-22 (March,1997) pp 1-132.