§23. Studies on Advanced Superconductors for Fusion Device

Tachikawa, K. (Faculty of Engr., Tokai Univ.)

i) Fabrication of New Nb $_3$ Sn Superconductors for High-Field Use

Nb₃Sn superconductors with upper critical field Bc_2 exceeding 25T at 4.2K has been prepared through a new process starting from an intermediate Nb₆Sn₅ compound ¹⁾. Nb₆Sn₅ powder can be easily produced by a melt diffusion process at 900°C using Nb and Sn powders. The pre-reaction between powders of Nb₆Sn₅ and Nb by mechanical mixing promotes the formation of A15 Nb₃Sn in the subsequent heat treatment. The fabrication of tape specimens from mixed powder using Ta sheath has been performed without intermediate annealing. Third element can be added either to the Nb₆Sn₅ compound or to the mixed powder.

Nb₃Sn tapes prepared by the present process show Tc about 0.5K higher than that of bronze-processed Nb₃Sn. A Bc₂ of 24.7T has been obtained even in pure Nb₃Sn tape at 4.2K as illustrated in Fig.1. The Bc₂ is still enhanced by Ti doping, where 2 at% Ti addition produces the best high-field performance. The Jc of Nb₃Sn core exceeds 3.3×10^4 A/cm² at 20T and 4.2K after the heat treatment at 900°C as shown in Fig.1. Table I indicates the normal state resistivity ρ_n of present and bronze-processed Nb₃Sn specimens. The ρ_n value of present Nb₃Sn is much larger than that of bronze-processed Nb₃Sn. The high Bc₂ obtained in the present pure Nb₃Sn specimen seems to be originated to the large ρ_n value, since Bc₂ is dependent on ρ_n in type-II superconductors. A small amount of Cu addition to the mixed powder decreases the optimum reaction temperature to 850°C. Present Nb₃Sn may be promising for high-field use as well as for refrigeratorcooled superconducting magnets.

ii) Investigation on the Present Status of Nb_3Sn Superconductors.

Nb₃Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. We summarized manufacturing procedures, superconducting performances and applications of Nb₃Sn conductors fabricated through different processes in different countries ³⁾. More detailed subjects included in this report are high-field properties, AC properties, conductor for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb₃Sn conductors. The comprehensive grasp on the present status of Nb₃Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices.

Fig.1 Critical current density Jc versus magnetic field B at 4.2K for present Nb₃Sn specimens. NS: pure Nb₃Sn, NTS: NS with 2 at% Ti addition, NTSC: NTS with 10 wt% Cu addition.

Table I Normal state resistivity just above Tc in different Nb₃Sn specimens. Data of bronze-processed Nb₃Sn are taken from reference $^{2)}$

Constant and an address of the part of the	
Present Process	$\rho_n(\mu \Omega \cdot m)$
Pure Nb ₃ Sn	0.29
NTS (2at%Ti)	0.39
Bronze Process	$\rho_n(\mu\Omega \cdot m)$
Pure Nb ₃ Sn	0.08
1.60at%Ti in Nb₃Sn	0.33
2.71at%Ti in Nb₃Sn	0.41

References

- Tachikawa, K., Natsuume, M., Kuroda,Y. and Tomori, H., Cryogenics, <u>36</u> (1996) pp 113-117.
- Sekine, H., Itoh, K., and Tachikawa, K., J. Appl. Phys., <u>63</u> (1986) pp 2167-2170.
- Tachikawa, K. and Yamamoto, J., Research Report NIFS-MEMO-20 (March, 1996) pp 1-77.