
Conservation laws of energy and momentum are

fundamental properties of general physical systems

which have symmetries with respect to translations

in time and space as shown by Noether’s theo-

rem. Recently, based on gyrokinetic formulations,

energy and momentum conservation in tokamak plas-

mas has been actively investigated to accurately de-

scribe transport processes determining energy and

flow profiles. The energy-momentum conservation

laws for the Vlasov-Maxwell equations were derived

by Brizard using the Noether method while the gy-

rokinetic model is an approximate representation of

the Vlasov-Poisson-Ampère system in which electro-

magnetic waves propagating at the light speed c are

removed. For a useful reference to the gyrokinetic

conservation laws, the present work [1] derives con-

servation laws for the Vlasov-Poisson-Ampère sys-

tem and show how they differ from those for the full

Vlasov-Maxwell system.

The governing equations for the Vlasov-Poisson-

Ampère system are given by
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Here, fa(x,v, t) denotes the particle distribution

function for species a and the electromagnetic fields

are written as E = −∇φ − c−1∂A/∂t and B =

∇ × A. Here, we use the Coulomb gauge condi-

tion ∇ · A = 0. The current density defined by

j ≡ ∑
a ea

∫
fad

3v can be written as j = jL + jT ,

where jL ≡ −(4π)−1∇ ∫
d3x�(∇� · j)/|x − x�| and

jT ≡ (4π)−1∇× (∇× ∫
d3x� j/|x− x�|) represent the

longitudinal and transverse parts, respectively. The

longitudinal and transverse parts of E are given by

EL = −∇φ and ET = −c−1∂A/∂t, respectively.

Conservation laws of energy and momentum for

nonrelativistic plasmas are derived [1] from apply-

ing Noetherfs theorem to the action integral for the

Vlasov-Poisson-Ampère system [2]. The symmetric

pressure tensor is obtained from modifying the asym-

metric canonical pressure tensor with using the rota-

tional symmetry of the action integral [1].

Defining the particle energy density Ep and the par-

ticle energy flux Qp by
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the energy conservation law is written as
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The momentum conservation law is given by

∂

∂t
(Pp +Pf ) +∇ · (Πp +Πf ) = 0, (6)

where the particle and field parts of the momentum

density and the pressure tensor are defined by

Pp ≡
∑
a
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Pf ≡ EL ×B
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,
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− 1
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Differences between the resultant conservation laws

and those for the Vlasov-Maxwell system including

the Maxwell displacement current are clarified by

Eqs.(4)–(7). These results provide a useful basis

for gyrokinetic conservation laws because gyrokinetic

equations are derived as an approximation of the

Vlasov-Poisson-Ampère system.
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