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Conservation laws of energy and momentum are
fundamental properties of general physical systems
which have symmetries with respect to translations
in time and space as shown by Noether’s theo-
rem. Recently, based on gyrokinetic formulations,
energy and momentum conservation in tokamak plas-
mas has been actively investigated to accurately de-
scribe transport processes determining energy and
flow profiles. The energy-momentum conservation
laws for the Vlasov-Maxwell equations were derived
by Brizard using the Noether method while the gy-
rokinetic model is an approximate representation of
the Vlasov-Poisson-Ampere system in which electro-
magnetic waves propagating at the light speed c are
removed. For a useful reference to the gyrokinetic
conservation laws, the present work [1] derives con-
servation laws for the Vlasov-Poisson-Ampere sys-
tem and show how they differ from those for the full
Vlasov-Maxwell system.

The governing equations for the Vlasov-Poisson-
Ampere system are given by
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Here, f,(x,v,t) denotes the particle distribution
function for species a and the electromagnetic fields
are written as E ~V¢ — ¢ t0A /0t and B
V x A. Here, we use the Coulomb gauge condi-
tion V- A = 0. The current density defined by
j = X, eq [ fad®v can be written as j = jr + jr,
where jr, —(4r)" WV [&3x (V' - §)/|x — x| and
jr = (Am)71V x (V x [d3x" j/|x — X|) represent the
longitudinal and transverse parts, respectively. The
longitudinal and transverse parts of E are given by
E; = —V¢ and Ep = —¢10A /0t, respectively.
Conservation laws of energy and momentum for
nonrelativistic plasmas are derived [1] from apply-
ing Noetherfs theorem to the action integral for the
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Vlasov-Poisson-Ampere system [2]. The symmetric
pressure tensor is obtained from modifying the asym-
metric canonical pressure tensor with using the rota-
tional symmetry of the action integral [1].

Defining the particle energy density &, and the par-
ticle energy flux Q, by
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the energy conservation law is written as
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The momentum conservation law is given by
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where the particle and field parts of the momentum
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Differences between the resultant conservation laws
and those for the Vlasov-Maxwell system including
the Maxwell displacement current are clarified by
Eqgs.(4)—(7). These results provide a useful basis
for gyrokinetic conservation laws because gyrokinetic
equations are derived as an approximation of the
Vlasov-Poisson-Ampere system.
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