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The new collisionless kinetic-fluid closure model
is applied to the three-mode ion temperature gra-
dient (ITG) driven system [1] We consider a rect-
angular domain of L, X Ly in the x-y plane with
a uniform external mdgnttl( ficld B = By(z + 6y)
(18] < 1), where y and z denote the unit vec-
tors in the y- and z-directions, respectively. The
system is assumed to be homogeneous in the z-
direction (0/0z = 0). The background density
and temperature gradients are assumed to ex-
ist in the a-direction, and their gradient scalt
lengths are given by L, = (dlnno/dz
0) and Ly = —(dInT;/dz)"!(> 0), respec—
tively. We employ the periodic boundary con-
ditions in both 2 and y directions. In the
three-mode ITG system, the perturbation part
of the ion distribution function is given by
f = 2Re[fi(y),t) cos(2mz/L,) exp(2miy/Ly)] —
2h(v),t) sin(4rx/L,), and the governing equations
for fi;, h, and the electostatic potential ¢ =
2Re[@1(t) cos(2nz/L,) exp(2riy/Ly)] are given by

(5t+ik6v||)f1(U||:t)+2ik2¢1(t)h(v||,t) = —ik1(t)G(y)) ,
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where L, = L, = 1/k and T; = T. (Te: the

electron temperature) are assumed and G(y)) =
[L+ (@} = ms/2 + Ouyle™1?/(2m)~1/2. Here,

we have used dimensionless normalized variables
.r—.z'/p,,y—-y/p,,v—v/vt,t—tvt/Ln, f=
f'Love/ping, and ¢ = e¢'L,,[/Tip;, where prime
represents a dimensional quantity, v; = /T;/my;
is the ion thermal velocity, p; = v/ is the ion
thermal gyroradius, and §2; = eB/m;c is the ion
gyrofrequency. Two important parameters © and
n; are given by @ = 6L, /p; and n; = L,/ L, re-
spectively.
Taking the velocity moments of Egs.(1) and (2),
we obtain
Oy + tk(Ouy + ¢1) =0, (4)
Oyug + ik(—)(nl + T + 051) + 2ik2¢1 up =0, ( )
Opuy, — 4k211n(q’91"ul) =1, (6)
O T1+ik[O(2u1+q1) + i1 ]+ 2ik> ¢y Tj, = 0, (7)
O, Ty, — 4k*Tm(41Ty) = 0, (8)
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where [n1(t), wi(t), T1(t), q1(t)] =
IS doy fuly, 0)[L, (L” — 1), (Uﬁ’ — 3y))] and
[un(t), Th(t)] = [Z5, duyj h(y,t )[U”’(Uﬁ —1)]. We
also obtain from Eq.(3),

ny = @1. (9)

In our nondissipative closure model (NCM), we
have
q1 = C11T1 + Cyyuy, (10)

where Cr; and C,; are rcal coefficients deter-
mined so as to give a valid relation for the linear
normal mode solution and its complex-conjugate
solution. On the other hand, in the Hammett-
Perkins model, ¢ = —2(2/77)1/2ik®T1 is used.
Figure 1 shows |¢1(t)| obtained by numerically
solving these fluid equations (4)-(10). The exact
nonlinear solution of the kinetic equations (1)-
(3) discovered by Watanabe, Sugama, and Sato
(WSS) [2] is reproduced as a solution of Egs.(4)-
(10) since the NCM in Eq.(10) is completely sat-
isfied by the WSS solution. The case of the most
simple closure, in which ¢g; = 0, and that of the
Hammett-Perkins closure q; = —2(2/7)Y/2ikOT;
are plotted for comparison to the WSS solution
in Fig.1. In the Hammett-Perkins model, the po-
tential |@1(t)| is saturated at a certain amplitude,
which is in contrast to the periodic amplitude os-
cillation shown by the NCM and the ¢; = 0 model.
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Fig.1. Numerical solutions of the fluid system of
Eqgs.(4)—(9) for k = 0.1, @ = 1, and n; = 10. A
solid curve represents |¢1(t)| obtained by using the
NCM in Eq.(10). Results obtained by using the
Hammett-Perkins model and the ¢; = 0 model are
also shown by dashed and dotted curves, respec-
tively.
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