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1,2,3) are also written in the form of the energy inte­

gral:

2 roo
[MajPp, MajpT , MajTT]= n aV1i Jo dKVi?e- K

( 5)j-l
x K - 2 [MaPp(K) , MaPT(!() , MaTT(K)],

where Mapp(K) , MaPT(K) , and MTT(K) represent

contributions of monoenergetic particles to Majpp ,

MajPT, and MajTT, respectively.

Figure 1 shows the normalized monoenergetic

neoclassical viscosity coefficients [Mp* P M* M*] =, PT' TT-
[Mpp(K), MpT(K), MTT(K)]j[(47r2/V')mvT(1/J,x,)2 K 3/ 2]

as a function of cEs/v, which are obtained by com­

bining our method with numerical output of the

DKES for the magngetic field strength given by

B = Bo[1 - €t cos (}B - €h COS(l(}B - nCB)] with

Bo = 1 T, €t = 0.1, €h = 0.05, l = 2, and n = 10.

Here, vv/v = 3 X 10-6 is used, which corresponds

to the l/v regime for the case of Es = O. In Fig. 1,

Mpp ~ -NfpT ~ MTT (which implies small parallel

viscosities) and their reduction with increasing cEs/v
are clearly seen. The Es-dependent neoclassical

transport coefficients for radial fluxes and parallel

currents can be calculated as well.
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We have presented a novel method to obtain the

full neoclassical transport matrix for general toroidal

plasmas by using the solution of the linearized drift

kinetic equation with the pitch-angIe-scattering colli­

sion operator [1]. This method can also be applied to

investigation of the E x B drift effects on the neoclas­

sical transport coefficients based on the drift kinetic

equation given by

v fal - C~(fal) = -Vda' V faM + eavIIB (BEll) faM
Ta (B2) ,

where the operator V == VII +VE consists of the parallel

motion part

VII = veb· V- ~v(1 - e2)(b· VlnB)~
2 ae'

and the E x B drift part

TT _ n cEs
VE = VE' v == --Vs x B· V(B2) ,

with V taken for (v, e== VII / v) being fixed. The E x B
drift operator VE has the same form as employed in

the DKES [2]. Here, we assume the incompressibility

conditions V . U a = V . qa = 0 and the stellarator

symmetry B(s, (), () = B(s, -(), -C).
In helical systems, the polidal and toroidal

viscosities of [(B P . (V . 7ra)) , (BP . (V . Sa)),
(BT,(V'7ra )),(BT'(V,Sa ))] are re­

lated to the polidal and toroidal flows

[(u~)/x', 5~a (q~)/X', (u~)/1/J', 5~a (q&)/1/J',] by
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Here, the Onsager-symmetric poloidal and toroidal vis­

cosity coefficients Majpp , MajpT , and MajTP (j =
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Fig.I. Poloidal and toroidal viscosity coefficients as a

function of cEs/v for €t = 0.1, €h = 0.05 and vv/v =

3 X 10-6 .
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