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§7. Moment-Equation Methods for
Calculating Neoclassical Transport
Coefficients in General Toroidal Plasmas

Sugama, H., Nishimura, S.

A detailed comparison is made between moment-
equation methods presented by Sugama and
Nishimura [1] and by Taguchi [2] for calculating
neoclassical transport coefficients in general toroidal
plasmas including nonsymmetric systems [3]. It is
shown that these methods can be derived from the
drift kinetic equation with the same collision model
used for correctly taking account of collisional mo-
mentum conservation. In both methods, the Laguerre
polynomials of the energy variable are employed to
expand the guiding-center distribution function and
to obtain the moment equations, by which the radial
neoclassical transport fluxes and the parallel flows are
related to the thermodynamic forces. The methods
are given here in the forms applicable for an arbi-
trary truncation number of the Laguerre-polynomial
expansion so that their accuracies can be improved
by increasing the truncation number. Differences
between results from the two methods appear when
the Laguerre-polynomial expansion is truncated up to
a finite order because different weight functions are
used in them to derive the moment equations. At each
order of the truncation, the neoclassical transport
coefficients obtained from the Sugama-Nishimura
method show the Onsager symmetry and satisfy
the ambipolar-diffusion condition intrinsically for
symmetric systems. Also, numerical examples are
given to show how the transport coefficients converge
with the truncation number increased for the two
methods.

In order to elucidate the differences between re-
sults from the Sugama-Nishimura and Taguchi’s meth-
ods, we consider the axisymmetric case. In this case,
the Sugama-Nishimura method is equivalent to the
conventional moment approach [4]. The neoclassical
transport of a single species of ions in the banana
regime are given by

éUJe _ CIXQ |:009:|
5p; 40 ex'(B?) | Cip |’
o T2 T2

L= Cft nim;Tic*T x 1)

Tfe OB

where the poloidal flow velocity ug, the poloidal heat
flow qg, and the radial heat flux ¢® for ions are driven
by the radial ion temperature gradient X [see Ref. 3
for detailed definitions of variables in Eq. (1)]. The
numerical values of the dimensionless coefficients Coy,
Cip, and O obtained from the Sugama-Nishimura
method and those from Taguchi’s method are shown
in Fig. 1 for the cases using the different truncation
numbers jmax = 1,2 and 3 (referred to as the 13M,
21M and 29M approximations, respectively).
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Fig.1. Dimensionless neoclassical coefficients calculated as
functions of f;/ fe for jmax = 1 (13M), 2 (21M), and 3 (29M).
Here, f; denotes the fraction of trapped particles and f. =
1— fi. The coefficients Cpg, C1g, and Cy in Eq. (1) obtained
from the Sugama-Nishimura method are plotted by solid
curves in (a), (b), and (c), respectively. For comparison,
also plotted by dotted curves are Cj,, C1y, and C, obtained
from Taguchi’s method.
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