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Nonlinear amplitude equations of the multi­
helicity modes near marginally stable states 
are given by [1 ,2] 

dAn/ dt = /An- :2: Vn-n1 ,n-n2 An-n1 +n2 Anl An2 
n1 ,n2 

where An(t) (n = 0,±1,±2,···) denote the 
amplitudes of the multi-helicity modes with 
the lowest poloidal mode number m = 1 
and the toroidal mode number n for the time 
t. The potential fluctuation is approximately 
given in terms of the linear eigenfunctions 
¢>1 for the dominant m = 1 modes as J = 
L~=-ooAn4>t(x + n~)sin[27r(y/Ly + nz/Lz)] 
where x, y, and z are the coordinates in the 
radial, poloidal, and toroidal directions. Here 
m = 1 and n = 1 corresponds to the largest 
poloidal and toroidal wavelengths not in the 
whole toroidal region but in the local slab sys­
tem, which are denoted by Ly and Lz. Thera­
dial interval between the adjacent m = 1 mode 
rational surfaces is given by ~ _ LsLy/ Lz 
( L s: the magnetic shear length) while ·all the 
m = 1 modes have the same linear growth rate 
1(> 0). The coefficients Vmn of the nonlinear 
term is calculated from the linear eigenfunc­
tions. The coefficient V00 represents the inten­
sity of the self-interaction or the nonlinear cou­
pling of the modes with the same helicity and 
Vmn for (m,n) :f. (0,0) represents that of the 
interaction between the modes with different 
helicities. 

If we use T = 1t, Xn = (Voo/!)A~, 
,\ = (Vat + Vit) /Voo and retain only the self­
interaction and interaction between adjacent 
modes, we obtain 

1 dXn 
2 dT = Xn(1 - Xn- ,\Xn-1 - -XXn+d· 

Here the parameter ,\ measures the strength of 
the nonlinear interaction between the adjacent 

m = 1 modes and is an increasing function of 
the ratio of the radial width W of the m = 1 
mode structure ¢>1 ( x) to the interval ~. We 
easily obtain the following nontrivial station­
ary solutions of the above equations: 

(I) 

(II) 

X n = 1 / ( 1 + 2,\) (for all n) 

X _ { 0 (for even n) 
n - 1 (for odd n) 

Linear analysis shows that, for the case (a) 
,\ < 1/2, the solutions (I) and (II) are sta­
ble and unstable, respectively, while, for the 
case (b) ,\ > 1/2, the solutions (I) and (II) 
are unstable and stable, respectively. Radial 
profiles of the mode structures corresponding 
to these solutions are schematically shown in 
Figs.l (a) and (b). Thus, when the multihe­
licity interaction becomes strong enough, one 
of the two adjacent mode amplitudes vanishes. 
This tendency is also confirmed by the non­
linear simulation of the multihelicity resistive 
interchange modes [2]. 
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Fig. 1. Radial profiles of the mode structures 
corresponding to the solutions (I) (left) and 
(II) (right) for the cases (a),\< 1/2 and (b) 
,\ > 1/2. Solid (dashed) curves correspond 
to stable (unstable) solutions. 
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