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The temporal evolution of linear toroidal
ion temperature gradient (ITG) modes is stud-
ied based on a gyrokinetic integral equation
including an initial condition [1]. It is shown
how to evaluate the analytic continuation of
the integral kernel as a function of a complex-
valued frequency, which is useful for investigat-
ing the asymptotic damping behavior of the
ITG mode. In the presence of the toroidal
magnetic drift, the potential perturbation con-
sists of normal modes and a continuum mode,
which correspond to contributions from poles
and from an integral along a branch cut, re-
spectively, of the Laplace-transformed poten-
tial function of the frequency [1,2]. The nor-
mal modes have exponential time dependence
while the continuum mode, which has a bal-
looning structure, shows a power law decay
o t72, where t is the time variable. Therefore,
the continuum mode dominantly describes the
long-time asymptotic behavior of the pertur-
bation for the stable system.

Most of conventional linear analyses of the
microinstabilities have shown the dispersion
relation only for the case of positive growth
rates partly because calculation of negative
growth rates is sometimes more complicated
due to treatment of analytic continuation in
the complex-frequency plane. In the present
work, by performing proper analytic continu-
ation for the dispersion relation, the normal
modes’ growth rate, real frequency, and eigen-
function are numerically obtained for both
stable and unstable cases, and the critical
condition for the marginal stability is deter-
mined accurately. The normalized growth rate
vkops Jwee Of the toroidal ITG mode for the
large aspect ratio tokamak case is shown as
a function of 5, = dInT;/dInn in Fig.1 where
we can clearly identify the critical values of n;
where the growth rate vanishes. In Fig.2(a),
the normalized growth rate v/w.. and real fre-
quency w,/w.. as a function of the magnetic
shear parameter § = (r/q)(dq/dr). In this
case, the growth rate has a peak at § ~ 0.4.
The eigenfunctions ¢(f) for § = 0.8 are
shown in Fig.5(b).

04
(a)
03 |

02 |

0.1

ni
Fig.1. Normalized growth rate v/w.. as a function of
n; for kgp, = 0.75, T./T; = 1, L,/R = 0.2, 5 = 1,
0y, =0,and ¢=1,2.
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Fig.2. (a) Normalized growth rate v/w.. and real fre-
quency w,/w.. as a function of § = (r/q)(dq/dr) for
TE/T.' = 1, Ln/R = 0.2, ni = 2, kg/)s = 0.75, Bk = U,
and ¢ = 1. (b) Eigenfunctions ¢(6) for § = +0.8. The
real and imaginary parts of the eigenfunction are shown
by the solid and dotted lines, respectively.
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