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The tenlporal evolution of linear toroidal 
ion tenlperature gradient (ITG) modes is stud­
ied based on a gyrokinetic integral equation 
including an initial condition [1]. It is shown 
how to evaluate the analytic continuation of 
the integral kernel as a function of a cOlllplex­
valued frequency, w'hich is useful for investigat­
iIlg the aSYIl1ptotic danlping behavior of the 
ITG Illode. In the presence of the toroidal 
nlagnetic drift: the potential perturbatio'n con­
sists of nornlal Illodes and a continuunl nlode, 
\vhich correspond to contributions frol11 poles 
and frol11 an integral along a branch cut: re­
spectively: of the Laplace-transfornled poten­
tial function of the frequency [1 :2]. The nor­
nlal Illodes have exponential til11e dependence 
\vhilc the cOlltinuUlll l11ode: which has a bal­
looning struc.:turc: shows a. power la\v decay 
:x t-'2: where t is the tilHe variable. Therefore: 
the continuunl Illode dOlllinantl:y describes the 
long-tillle asynlptotic behavior of the pertur­
bation for the stable systeIl1. 

:rvlost of conventional linear analyses of the 
Inicroinstabilities have shown the dispersion 
relation only for the case of positive growth 
rates partly because calculation of negative 
growth rates is son1etinles l110re cOlllplicated 
due to treatment of analytic continuation in 
the conlplex-frequency plane. In the present 
'work: by perfonlling proper analytic continu­
ation for the dispersion relation, the nonnal 
n10des' growth rate: real frequency, and eigen­
function are nUlnerically obtained for both 
stable and unstable cases: and the critical 
condition for the nlarginal stability is deter­
mined accurately. The nonnalized growth rate 
",.koPs/w*c of the toroidal ITG Illode for the 
large aspect ratio tokaIl1ak case is sho\\'n as 
a function of l7i == dIn 'Td dIn n in Fig.1 where 
we can clearly identify the critical values of 'T]i 

\vhere the growth rate vanishes. In Fig.2(a): 
the nonllalized growth rate, / W*e and real fre­
quency w,/w*<: as a function of the magnetic 
shear parameter s = (r/q)(dq/dr). In this 
case, the growth rate has a peak at s ~ 0.4. 
The eigenfunctions ¢(O) for s == ±0.8 are 
shown in Fig.5(b). 
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Fig.I. Normalized growth rate, /:..).t: as a function of 

TJi for kfj(J::; = 0.75, Te/Ti = I, LrJ R = 0.2, S .= I, 

(h = 0, and q = 1, 2. 
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Fig.2. (a) Normalized growth rate ,/wH and real fre­

quency 'w'7./'w'*t: as a function of s == (r/q)(dq/dr) for 

T~/Ti = 1, L 1I / R = 0.2, TJi = 2, ko(Js = 0.75, Ok = 0, 
and q = 1. (b) Eigenfunctions ¢( 0) for s = ±0.8. The 
real and imaginary parts of the eigenfunction are shown 

by the solid and dotted lines, respectively. 
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