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The gyrokinetic theory is a basic fr a III e
work to d-escribe microinstabilities, turbulence, 
and resultant anomalous transport observed in 
magnetically confined plasmas. Basic equa
tions for the gyrokinetic theory are the gy
rokinetic equations for the particle distribu
tion functions and the Poisson-Ampere equa
tions for the electrolllagnetic fields. A lllodern 
derivation of the gyrokinetic equation is based 
on the Hanliltonian and Lagrangian formula
tions. The resultant gyrokinetic equation de
scribes the total distribution function as an in
variant along the particle Illotion. There, the 
motion equation is derived from the gyrophase
independent Hamiltonian, which automati
cally ensures the conservation of the phase 
space volume and the magnetic moment even 
in the approxilllate expressions obtained by 
truncating the perturbation expansion up to 
the finite order. In the gyrokinetic theory, the 
particle Hamiltonian (or the particle energy) is 
not an invariant since the fluctuating electro
magnetic fields are treated. Instead, the con
served quantity is the total energy of the sys
tem, which is given by the sum of the kinetic 
energy of the particles and the energy of the 
electroinagnetic fields. However, the proof of 
the total energy conservation is not trivial in 
the conventional formulation, \vhere only the 
particle dynamics are described by the Harnil
tonian or Lagrangian. Then, it seeins natural 
that the formulation should be extended in or
der to derive governing equations for both the 
particles and the electromagnetic fields frorn 
the first principle. The purpose of the present 
work is to present such an extended formula
tion of the gyrokinetic theory [1]. 

The Lagrangian for the gyrokinetic Vlasov
Poisson-Anlp(~f(~ systern takes the following 
fonn 
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where Z(J, = (X(J" Ua, /-la, ~(J,) represeilts the gy- , 
rocenter coordinates for species a obtained by 
the Lie-trasform method, Da is the Jacobian, 
Fa denotes the distribution function, (CPl, Ad 
are the potentials for the fluctuating electro
magnetic fields, and the last term with . ~ is 
included to give the Coulonlb gauge condltlOn 
\7 . Al = O. The single-particle Lagrangian La 
for species a is given by 

ea * X· nLa C ;: H La, = -Aa' a, + --/-l(J.~(J. - (J. 
C ea 
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and the single-particle Hamiltonian 

H" = ~rn"u,; + fl"Bo(X,,) + Co (7/),,) 

+. e~ 2 (IAI (Xo + Po, tW) - f;' ( {SOl, 7~,,} ) 
2rnac 

where 7/Ja = CPl -~VaO·Al' Here, (.) denotes the 

gyrophase average, and Sal represents the geI:
erating function for the gyro center symplectIc 
Lie transfonn. 

Fronl the variational principle for the La
grangian shown above, all the governing equ~,
tions for the gyrokinetic system, the gyrokI
netic equation for the particle distribution 
function and the gyrokinetic Poisson-Ampere 
equations for the electronlagnetic fie~ds, ~re 
derived. In this generalized LagrangIan for
rnulation, the energy conservation property for 
the total nonlinear gyrokinetic systerll of equa
tions is directly shown from the Noether's 
theorem. This formulation can be utilized 
in order to derive the nonlinear gyrokinetic 
system of equations and the rigorou.sly COl~
served total energy for fluctuations WIth arbl
trary frequencies. Sinlplified gyrokinetic sys
tems of equations "vith the conserved energy 
are obtained frorn the Lagrangian with the 
small electron gyroradii, quasineutrality, and 
linear polarization-rnagnetization approxilna
tions. These sirnplified systelns of equations, 
'which retain the rigorous energy conservation, 
are considered to be useful for nUlnerical sim
ulation of plaslna turbulence and anonlalous 
transport. 
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