§13. Gryokinetic Field Theory
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The gyrokinetic theory is a basic frame-
work to describe microinstabilities, turbulence,
and resultant anomalous transport observed in
magnetically confined plasmas. Basic equa-
tions for the gyrokinetic theory are the gy-
rokinetic equations for the particle distribu-
tion functions and the Poisson-Ampere equa-
tions for the electromagnetic fields. A modern
derivation of the gyrokinetic equation is based
on the Hamiltonian and Lagrangian formula-
tions. The resultant gyrokinetic equation de-
scribes the total distribution function as an in-
variant along the particle motion. There, the
motion equation is derived from the gyrophase-
independent Hamiltonian, which automati-
cally ensures the conservation of the phase
space volume and the magnetic moment even
in the approximate expressions obtained by
truncating the perturbation expansion up to
the finite order. In the gyrokinetic theory, the
particle Hamiltonian (or the particle energy) is
not an invariant since the fluctuating electro-
magnetic fields are treated. Instead, the con-
served quantity is the total energy of the sys-
tem, which is given by the sum of the kinetic
energy of the particles and the energy of the
electromagnetic fields. However, the proof of
the total energy conservation is not trivial in
the conventional formulation, where only the
particle dynamics are described by the Hamil-
tonian or Lagrangian. Then, it seems natural
that the formulation should be extended in or-
der to derive governing equations for both the
particles and the electromagnetic fields from
the first principle. The purpose of the present
work is to present such an extended formula-
tion of the gyrokinetic theory [1].

The Lagrangian for the gyrokinetic Vlasov-
Poisson-Ampere system takes the following
form
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where Z, = (X, Ui, ita, €,) represents the gy-
rocenter coordinates for species a obtained by
the Lie-trasform method, D, is the Jacobian,
F, denotes the distribution function, (¢, Ay)
are the potentials for the fluctuating electro-
magnetic ficlds, and the last term with A is
included to give the Coulomb gauge condition
V - A = 0. The single-particle Lagrangian L,
for species a is given by
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where 1, = ¢1—2v,9-Ay. Here, (-) denotes the
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gyrophase average, and S, represents the gen-
erating function for the gyrocenter symplectic
Lie transform.

From the variational principle for the La-
grangian shown above, all the governing equa-
tions for the gyrokinetic system, the gyroki-
netic equation for the particle distribution
function and the gyrokinetic Poisson-Ampere
equations for the electromagnetic fields, are
derived. In this generalized Lagrangian for-
mulation, the energy conservation property for
the total nonlinear gyrokinetic system of equa-
tions is directly shown from the Noether’s
theorem. This formulation can be utilized
in order to derive the nonlinear gyrokinetic
system of equations and the rigorously con-
served total energy for fluctuations with arbi-
trary frequencies. Simplified gyrokinetic sys-
tems of equations with the conserved energy
are obtained from the Lagrangian with the
small electron gyroradii, quasineutrality, and
linear polarization-magnetization approxima-
tions. These simplified systems of equations,
which retain the rigorous energy conscrvation,
arce considered to be useful for numerical sim-
ulation of plasma turbulence and anomalous
transport.
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