§7. Core Plasma Design of the Compact Sub-Ignition Helical Fusion Reactor FFHR-c1

Miyazawa, J., Goto, T., Sagara, A.

A compact helical reactor named FFHR-c1 has been proposed as a helical type nuclear test machine in the 1<sup>st</sup> IAEA DEMO Programme Workshop [1]. FFHR-c1 is basically a large duplication of LHD with the scale factor of 10/3, *i.e.*, the helical coil major radius,  $R_c$ , of FFHR-c1 is 13.0 m. Two options with different magnetic field strength are under consideration for FFHR-c1. One is named FFHRc1.0 with  $B_c = 4$  T and the other is FFHR-c1.1 with  $B_c = 5.6$ T, where  $B_c$  is the magnetic field strength at  $R_c$ , Typical machine parameters of FFHR-c1 are compared with those of LHD and FFHR-d1 [2,3] in Table 1.

To design the core plasma in FFHR-c1 using the Direct Profile Extrapolation (DPE) method [4,5], the effect of additional heating has been taken into consideration. The heating power in the reactor,  $P_{\text{reactor}}$ , in the DPE method has been modified to

$$P_{\text{reactor}} = P_{\alpha} - P_{\text{B}} + P_{\text{aux}} = C_{\text{aux}} (P_{\alpha} - P_{\text{B}}), \quad (1)$$

where  $P_{\alpha}$ ,  $P_{\text{B}}$ , and  $P_{\text{aux}}$  is the alpha heating power, the Bremsstrahlung loss, and the auxiliary heating power, respectively. In Eq. (1), a factor  $C_{\text{aux}}$  is introduced to linearize the equation. Note that  $P_{\text{aux}} = (1 - 1/C_{\text{aux}}) P_{\text{reactor}}$ . The confinement improvement factor,  $\gamma_{\text{DPE}}$ , used in the DPE method [5] has been modified to

$$\gamma_{\rm DPE*} = \left( (1.0 - 0.35/C_{\rm aux}) / (P_{\rm dep}/P_{\rm dep1})_{\rm avg,exp} \right)^{0.6}, \quad (2)$$

where  $(P_{dep}/P_{dep1})_{avg,exp}$  is the peaking factor of the heating profile in the experiment. Plasma parameters in FFHR-c1 are estimated by the modified DPE method as shown in Fig. 1. "Q > 7" with  $P_{fusion} = 5 P_{\alpha} \sim 1$  GW ( $C_{aux} \sim 1.8$ ) and "*selfignition*" with  $P_{fusion} \sim 1.7$  GW ( $C_{aux} = 1$ ) can be achieved in FFHR-c1.0 and c1.1, respectively.

- 1) http://advprojects.pppl.gov/Roadmapping/IAEADEMO
- 2) A. Sagara, et al., Fusion Eng. Des. 87 (2012) 594.
- 3) T. Goto, et al., Plasma Fusion Res. 7 (2012) 2405084.
- 4) J. Miyazawa, et al., Fusion Eng. Des. **86** (2011) 2879.
- 5) J. Miyazawa, et al., Nucl. Fusion **52** (2012) 123007.

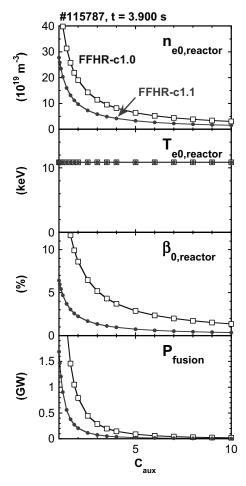



Fig. 1. Plasma parameters estimated by the modified DPE method. (a) the central electron density, (b), the central electron temperature, (c) the central beta, and (d) the fusion output, in FFHR-c1.0 (open squares) and c1.1 (closed circles), are plotted with respect to  $C_{aux}$ .

|                                                                                  | LHD                   | FFHR-c1.0                                                 | FFHR-c1.1                                                  | FFHR-d1                                                                      |
|----------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|
| R <sub>c</sub><br>Helical coil major radius                                      | 3.9 m                 | 13.0 m                                                    | $\leftarrow$                                               | 15.6 m                                                                       |
| V p<br>Plasma volume                                                             | $\sim 30 \text{ m}^3$ | ~1,000 m <sup>3</sup>                                     | $\leftarrow$                                               | ~2,000 m <sup>3</sup>                                                        |
| $B_{c}$<br>Magnetic field strength at $R_{c}$                                    | ~2.5 T                | 4.0 T                                                     | 5.6 T                                                      | 4.7 T                                                                        |
| W <sub>mag</sub><br>Magnetic stored energy                                       | ~1 GJ                 | ~68 GJ                                                    | ~126 GJ                                                    | ~160 GJ                                                                      |
| $P_{aux}\left(\mathcal{I}_{aux} ight)$<br>Auxiliary heating power (heating time) | 30 MW (2 s)           | 140 MW (1 year)                                           | 50 MW (1 hour)                                             | 50 MW (1 hour)                                                               |
| <b>P</b><br>fusion<br>Fusion output                                              | -                     | ~1 GW                                                     | ~2 GW                                                      | ~3 GW                                                                        |
| duration<br>Maximum duration time of a shot                                      | 1 hour                | 1 year                                                    | 6 month                                                    | 1 year                                                                       |
| $arPhi_{ m n}$<br>Maximum neutron fluence per shot                               | _                     | $\sim 8 \text{ dpa}$<br>(~0.8 MW/m <sup>2</sup> × 1 year) | $\sim 8 \text{ dpa}$<br>(~1.5 MW/m <sup>2</sup> × 6 month) | $\sim 15 \text{ dpa}$<br>( $\sim 1.5 \text{ MW/m}^2 \times 1 \text{ year}$ ) |

Table 1. Typical machine parameters in LHD, FFHR-c1.0, FFHR-c1.1, and FFHR-d1. The maximum duration time in FFHR-c1.1 is limited to a half year since the neutron shields is expected to be 5/6 times thinner than in FFHR-d1.