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A term “wave collapse” is used to describe the
formation of the singularity in a finite time in mathematical
models describing nonlinear wave systems. It is one of the
basic phenomena in nonlinear physics. The singularity also
signals the limit of the model validity. It was predicted that
the presence of the nonlocal nonlinearity eliminates collapse
in the system governed by a nonlocal NLS equation.[1-5]

We discuss the wave collapse existence in the
system described by the generalized nonlinear Schrédinger
(GNLS) type of equation with two additional nonlocal
nonlinear terms [2]:
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where 4 is vector potential envelope. This equation models
nonlinear coherent structures in, e.g.: ETG turbulence [5]
and weakly relativistic laser-plasma interaction [2-4].

Localized stationary solution of (1) is found in a

form of a moving soliton with 3 conserved quantities[3]:
A= p(u)expl[iBu) +i#t], (2)
where u=x-vw , and v is the soliton velocity. After
introducing the ansatz (2) in Eq.(1), first integration for
localized boundary conditions ( p(u), p(u),.p(u),, — 0 for

u — 0 ) gives the soliton amplitude equation:
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Singular point is p, = ¥12/5 , while region p<p. corresponds
to a bright soliton. Additional integration of (3) yields a
moving soliton solution in implicit form, with the maximum
soliton amplitude p,? =242 -v*)/(3/16-v*/12) . For py-- p.
the soliton profile is secant hyperbolic, like the soliton of the
standard cubic NLS equation. When p, approaches the value
of p., the soliton profile steepens and transits toward the
pointed, cusp type of a profile (Fig.1).

Stability analysis by using Vakhitov-Kolokolov
stability criterion shows that moving EM solitons are stable
in the region A< A, where A, corresponds to the maximum
value of photon number (wave energy) for a given velocity.
A set of direct numerical simulations of the nonlinear model
(1) has been performed in order to investigate soliton
dynamics [3]. Initially perturbed stable solitons exhibit long
lived oscillating behavior of the breather type, with the
amplitude excursion from the initial value increasing as the
level of perturbation grows, eventually leading to a rapid
aperiodic growth of the amplitude. This continues up to the
point when the amplitude reaches the critical value, creating
a highly unstable cusp structure. Due to the coincidental
break up of the numerical scheme, we were unable to follow
the dynamics of this structure further.

The process above is similar to the initial stage of
the collapse phenomenon, which is predicted in the case of
the GNLS equation [4]. To conclude if the unstable cusp
soliton structure in above model will collapse or break up,
we have attempted some further analyses:

1) Bifurcation analysis: This approach is
analogous to the one of Ref. [6]. Stability analysis shows
that depending on parameters A,v two types of bifurcation
are possible: tangential bifurcation that corresponds to
stable soliton solutions, and Hopf-Andronov (HA)
bifurcation. The cascade of HA bifurcations can be the
origin of complex behavior [7] of our system (collapse as
one of possible scenarios). However the additional studies
are needed to make a definite conclusion about the collapse.

2) Linear stability analysis around the cusp
solution: Similar to Ref. [8], analysis of the simplified
system (without the last term in Eq.(1)) is performed. It is
shown that different families of solution are possible
depending on the initial conditions and system parameters.
One of them is the localized mode of a cusp type, as found in
our model. This mode reminds of the so-called nonlinear
explosion mode [8]. However, the strict conclusion about
the collapse of the full system (1) is still missing.

3) Virial theorem: In the case of the NLS equation
(first three terms in (1)), Virial theorem gives a sufficient
condition for the collapse and an estimate of the collapse
threshold [8]. However, we cannot reach that kind of
conclusion, due to a singularity at the critical amplitude (3).

At present, the issue of wave collapse in GNLS
model remains unresolved. One of the possible solutions is
the inclusion of the thermal and higher order dissipative
effects in the model. These effects will eventually saturate
the system and remove a mathematical singularity to fill the
gap in our understanding of its long time behavior. However
turbulence model based on (1) may not be well founded [5]
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Fig.1. Soliton profile steepening (v=0.2)
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