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Turbulence is an assembly of various kinds of vor
tices. Among others the tubular swirling motion of con
centrated vorticity is observed ubiquitously. They play
central roles in turbulence dynamics. Understanding of
these vortical structures may therefore be useful for the
prediction and control of turbulence.

An objective eduction scheme of tubular swirling vor
tices has been recently introduced and developed, which
is called the low-pressure vortex method l ). This enables
us to estimate the physical characteristics of tubular vor
tices quantitatively. It was found that the mean diameter
of tubular vortices is 10 times Kolmogorov length and
they are rotating with 3 times Kolmogorov velocity2).

High vorticity is concentrated around the cores and sur
rounding double spiral layers. The axial component
of vorticity is dominant in the core, whereas the per
pendicular component in the layers3). The above re
sults, however, were derived from numerical turbulence
of Reynolds number less than 200. It is interesting that
for larger Reynolds numbers the tubular structure re
mains to exist stably and to play important roles in tur
bulence dynamics.

We consider here the motion of an incompressible vis
cous fluid which is governed by the continuity equa
tion and the Navier-Stokes equation. The flow is con
fined in a periodic cube of side length 21[". The velocity
and the pressure fields are expanded in the Fourier se
ries. The above equations are solved numerically by the
spectral/Runge-Kutta-Gill scheme on 2563 or 5123 grids.
The external force is supplied to maintain a statistically
steady state. The Reynolds numbers R).. of the isotropic
turbulence obtained by these calculations are 82, 123 and
174, where R).. is defined by Taylor microscale .x, RMS
velocity URMS and kinematic viscosity v. Note that the
cut-off wavenumber kmax'TJ is taken to be common to all
the three cases so that the numerical accuracy may be
comparable with each other, where 'TJ denotes the Kol
mogorov length. Tubular vortices in each isotropic tur
bulence are identified by low-pressure vortex method.

In the present method the position of all nodes of

vortex axes are recorded as three coordinates, the di
rection of segments between successive nodes as three
dimensional vectors, and the core boundary surfaces as
the coordinates of 32 points around all the nodes. These
data enable us to calculate the diameter and the circu
lation of vortices. The volume occupied by vortex cores
may be estimated by counting the number of grid points
inside core boundaries. At the same time the contribu
tion from the vortex cores to the enstrophy and energy
dissipation rate is calculated. The statistical quantities
thus obtained are shown in Table 1. These are the mean
values averaged over 23, 17 and 17 snapshots in the re
spective cases. Here, D denotes the diameter, V the
volume, r the circulation, U() the swirling velocity on
the core boundary, U'l the Kolmogorov velocity, wll the
axial velocity on the vortex axes, and lTOTAL the to
tal length of vortex axes. Subscript 'core' indicates the
contribution from the vortex core. It is seen that the
low-pressure vortices have the mean diameter of 10'TJ and
swirling velocity of 3ury, and occupy 30% volume of the
flow field. Their contributions to the enstrophy and en
ergy dissipation are 60% and 30% of the totals, respec
tively. Although the magnitude of the vorticity has no
direct connection with the definition of the low-pressure
vortex, the axial vorticity is larger than the RMS vorticty
by factor 2.5 or more.

In order to examine the Reynolds-number dependence
of these quantities we assume they scale as Rt' and esti
mate the exponent Q by use of the data at three different
values of the Reynolds number. The results are listed at
the bottom of Table 1. As the Reynolds number in
creases, the volume occupied by vortices, the swirling
velocity normalized by the RMS velocity decrease, the
vortex Reynolds number r lv, the swirling velocity nor
malized by the Kolmogorov velocity, the axial vorticity
and the total length increase, whereas the diameter and
the contribution of vortex cores to the enstrophy and
energy-dissipation rate are invariant.

The present results suggest that the vortices remain
to exist stably and play important roles in turbulence
dynamics even at larger Reynolds numbers.
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Table 1 Core statistics

R)..
D core Vcore 1 Qcore tcore U() U(J --=:1L LTOTAL-- -- - -- - --

'TJ V v Q t Un URMS WRMS L
82 10.44 0.348 109.5 0.603 0.314 2.975 0.648 2.48 405
123 9.93 0.298 107.4 0.566 0.277 3.001 0.533 2.64 945
174 10.76 0.305 123.5 0.585 0.308 3.262 0.487 2.71 2160

o 0.03 I -0.19 I 0.15 I -0.05 I -0.05 I 0.12 I -0.38 I 0.12 I 2.15
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