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The ion temperature gradient (ITG) mode is considered 
to cause the anomalous ion thermal transport in high tem­
perature core regions of tokamak plasmas. Recently, heli­
cal systems such as the Large Helical Device (LHD) have 
succeeded in producing high ion temperature plasmas. In 
addition, experiments to produce higher f3 plasmas in he­
lical systems are in progress, and therefore it is important 
to clarify electromagnetic effects on the ITG mode. In this 
work, linear properties of the electromagnetic ITG mode 
in finite-f3 helical systems with the large aspect-ratio mag­
netic configuration B / Bo = 1 - Et cos 8 - Eh (L8 - M () are 
studied, and compared with those in the electrostatic case 
and in the tokamak case[l]. 

The temporal dependence of the perturbation terms ¢ 
(the electrostatic potential) and All (the parallel compo­
nent of the vector potential), is assumed to be given by 
¢, All ex: exp( -iwt) with a complex frequency w = Wr + iT 
and time t. The perturbation part is given by 61 = 
-(qc¢/T)nFM + hexp( -ik~ . p), where p == (B/B) x 
(v/nB ) is the gyroradius vector, nB = qcB/(mc) is the 
gyrofrequency, k~ is the wavenumber vector given by the 
ballooning representation, qc is the charge (qc = e for ions, 
-e for electrons), n is the equilibrium density, and c is 
the light speed. The nonadiabatic part of the distribution 
function h, is determined by the collisionless linear electro­
magnetic gyrokinetic equation, 

[
VII 8 ]-i--+(w-wD) h 
Rq88 

= (w - W'T)JOC~:-L ) FM q~n (~_ V~I All) , 
(1) 

where WD = k~ . VD, VD = Ol/(v" + v'ij2)B- 2 B x VB, 
W*T = w*[{l + TJ(V/VT) - 3/2}]' W* = ckoT/qcBLn' TJ == 
Ln/ LT, Ln = -(d/dr) In n, and LT = -(d/dr) In T. In 
order to derive the eigenmode equations, the quasineu­
trality condition ni = ne and the Ampere's law VI All = 

-(47r/c) U;II + j:ll) are used. The number density pertur­
bation n = J d3v 61 and the current density perturbation 

jll = qc J d3 v VII 61 are rewritten in terms of ¢ and All 
by integrating Eq.(l). Here, we neglect effects of trapped 
particles and take the lowest-order solution of Eq.(l) in 
the massless-electron approximation. Derived parameter 
dependence of the dispersion relation is written as 

~ = F(q, s, 8k, 0, ko, TJi, Te/Ti, En, f3i' Te, Eh/Et, L, M), 
W*e . 

(2) 
with the dimensionless function F, the safety factor q, the 
magnetic shear parameter s = (r / q) ( dq / dr ), the ballooning 
angle 8k , the field line label 0, the poloidal wavenumber ko, 
En = Ln/ Ro and f3i = 87rnTd B2. We use the parameters 
q = 2, s = -1 (negative shear), 8k = 0, ° = 0, kOPTi = 0.65 
TJi = TJe = 3, En = 0.3, Te/Ti = 1, Eh/Et = 1, L = 2, 
M = 10. For the tokamak case, Eh/Et = O. 

Figure 1 shows the f3i dependence of the real frequency 
and the growth rate of the ITG mode. For f3i = 0.001% and 

0.5%, the real and imaginary parts of the eigenfunctions ¢ 
and All are plotted in Fig. 2 for the helical system. In the 
low f3i case (f3i = 0.001 %), The real frequency, the growth 
rate, and the potential eigenfunction are in good agreement 
with those in the electrostatic case[2], and the amplitude 
of All is negligibly small as shown in Fig. 2. 
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Figure 1: Normalized real frequency wr/w*e 
and growth rate. 

In the case of f3i = 0.5%, higher f3 increases magnetic fluc­
tuations and gives more oscillatory profiles of eingenfunc­
tions, which results from the multiplier effect of the helical 
magnetic ripples and the coupling to electromagnetic shear 
Alfven waves. 
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Figure 2: Normalized eigenfunctions (e/Te)¢ 
and (evTdcTe)AII in the helical system 

Thus, the growth rate of the ITG mode for the helical sys­
tem decreases with increasing f3i, and keeps smaller values 
than for the tokamak case. 
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