§19. Fabrication of Low Activation MgB₂ Mono-cored Superconducting Wire for Fusion Reactor

Kikuchi, A., Iijima, Y., Takeuchi, T. (NIMS), Hishinuma, Y.

The research and developments of MgB₂ wires were carried out for practical applications under the 20 K operation because of its high critical temperature (T_c) of 39 K, simple binary chemical composition and relatively low cost material. In the future applications, we think that MgB₂ wire is suitable to apply for nuclear fusion reactor because of its radioactivity property is lower than Nb based superconductors. T. Noda et al. was reported that the half-life of the MgB2 superconductors until handling level showed within 1 year [1]. However, J_c value of MgB₂ wire is lower, and its property need to have competitive for the Nb-Ti alloy superconducting wire in order to realize practical applications. We tried to fabricate the Cu addition using Mg₂Cu compound into MgB₂ wires having metal Ta sheath and reported that J_c properties were improved by the small amount of Mg₂Cu addition. In this study, we tried to fabricate 100 m scaled long wire in order to investigate the possibility of commercial wire deformation for practical applications. Furthermore, we also made the small solenoid coil using long MgB2 wire and excitation test of the small coil was carried out.

The precursor mixture powder was made by metal Mg powder (99.9%, -200 mesh), Mg₂Cu compound and amorphous B powder (99.9%,-submicron). The mixture 1at%Cu addition powder was tightly packed into the inner area of Ta /Cu tubes. Ta sheath is barrier material between Mg and Cu diffusion. Wire drawing was carried out at SWCC Co. Ltd based on the research collaboration, and we confirmed that the long wire which had about 1.30 mm of diameter without the breaking. We reconsidered heat treatment condition in order to make MgB2 coil and the low temperature diffusion was approached. This process was lower temperature and long time sintering and its pattern was suitable to apply the solenoid coil. A part of the long wire was heat treated at 450°C for several hours above 100 hours in Ar atmosphere. The transport critical current (I_c) (4.2 K) were measured under magnetic fields up to 15 T by using a DC four-probe method. J_c of all samples were defined as the I_c value divided by the cross-sectional area of the powder-filled core.

The typical J_c -B performance of the 1at%Cu addition samples by the low temperature diffusion at 450°C is shown in Fig. 1. J_c property in the low temperature diffusion was improved by the extending of heating time. In the case of 450°C, The optimum time was 200 hours and the maximum J_c value was obtained to be 500 A/mm² over at 4.2 K under 6 T. Furthermore, J_c property of MgB₂ wire via low temperature diffusion was higher than that of

commercial Nb-Ti wire under the low magnetic field below 3 T. This suggested that MgB₂ wire via low temperature diffusion process was one of the alternative materials of the Nb-Ti wire at 4.2 K application. In order to investigate workability of MgB₂/Ta wire via low temperature diffusion, we tried to fabricate small solenoid coil using 100 m scaled long wire and excitation test was carried out. The typical excitation test result is shown in Fig. 2. The five excitation test was carried out with changing sweep rate. The coil I_c was obtained to be 230 A and no I_c degradation and sweep rate dependence of the coil were observed during excitation test. The center magnetic field of the coil was obtained to be 2.62 T, and the load factor of the coil was comparable to 88 % from the coil I_c value and generated magnetic field. We confirmed good workability of Cu MgB₂/Ta/Cu mono-cored wire for long direction.

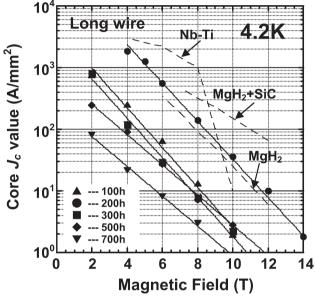


Fig. 1 Typical Core J_c -B performances of the 1at%Cu addition MgB₂ wire by the low temperature diffusion at 450°C.

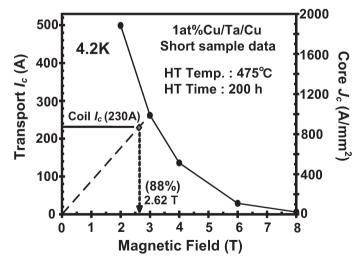


Fig. 2 The excitation test result of the small solenoid coil made by 100 m scaled long MgB $_2$ /Ta/Cu mono-cored wire.

[1] T. Noda et al., J. Nucl. Materi. 329-333 Part.2 (2004) 1590-1593.