§19. Fabrication of Low Activation MgB_{2} Mono-cored Superconducting Wire for Fusion Reactor

Kikuchi, A., Iijima, Y., Takeuchi, T. (NIMS), Hishinuma, Y.

The research and developments of MgB_{2} wires were carried out for practical applications under the 20 K operation because of its high critical temperature $\left(T_{c}\right)$ of 39 K , simple binary chemical composition and relatively low cost material. In the future applications, we think that MgB_{2} wire is suitable to apply for nuclear fusion reactor because of its radioactivity property is lower than Nb based superconductors. T. Noda et al. was reported that the half-life of the MgB_{2} superconductors until handling level showed within 1 year [1]. However, J_{c} value of MgB_{2} wire is lower, and its property need to have competitive for the $\mathrm{Nb}-\mathrm{Ti}$ alloy superconducting wire in order to realize practical applications. We tried to fabricate the Cu addition using $\mathrm{Mg}_{2} \mathrm{Cu}$ compound into MgB_{2} wires having metal Ta sheath and reported that J_{c} properties were improved by the small amount of $\mathrm{Mg}_{2} \mathrm{Cu}$ addition. In this study, we tried to fabricate 100 m scaled long wire in order to investigate the possibility of commercial wire deformation for practical applications. Furthermore, we also made the small solenoid coil using long MgB_{2} wire and excitation test of the small coil was carried out.

The precursor mixture powder was made by metal Mg powder (99.9%, -200 mesh), $\mathrm{Mg}_{2} \mathrm{Cu}$ compound and amorphous B powder (99.9%,-submicron). The mixture $1 \mathrm{at} \% \mathrm{Cu}$ addition powder was tightly packed into the inner area of $\mathrm{Ta} / \mathrm{Cu}$ tubes. Ta sheath is barrier material between Mg and Cu diffusion. Wire drawing was carried out at SWCC Co. Ltd based on the research collaboration, and we confirmed that the long wire which had about 1.30 mm of diameter without the breaking. We reconsidered heat treatment condition in order to make MgB_{2} coil and the low temperature diffusion was approached. This process was lower temperature and long time sintering and its pattern was suitable to apply the solenoid coil. A part of the long wire was heat treated at $450^{\circ} \mathrm{C}$ for several hours above 100 hours in Ar atmosphere. The transport critical current $\left(I_{c}\right)$ (4.2 K) were measured under magnetic fields up to 15 T by using a DC four-probe method. J_{c} of all samples were defined as the I_{c} value divided by the cross-sectional area of the powder-filled core.

The typical J_{c}-B performance of the $1 \mathrm{at} \% \mathrm{Cu}$ addition samples by the low temperature diffusion at $450^{\circ} \mathrm{C}$ is shown in Fig. 1. J_{c} property in the low temperature diffusion was improved by the extending of heating time. In the case of $450^{\circ} \mathrm{C}$, The optimum time was 200 hours and the maximum J_{c} value was obtained to be $500 \mathrm{~A} / \mathrm{mm}^{2}$ over at 4.2 K under 6 T . Furthermore, J_{c} property of MgB_{2} wire via low temperature diffusion was higher than that of
commercial $\mathrm{Nb}-\mathrm{Ti}$ wire under the low magnetic field below 3 T . This suggested that MgB_{2} wire via low temperature diffusion process was one of the alternative materials of the $\mathrm{Nb}-\mathrm{Ti}$ wire at 4.2 K application. In order to investigate workability of $\mathrm{MgB}_{2} / \mathrm{Ta}$ wire via low temperature diffusion, we tried to fabricate small solenoid coil using 100 m scaled long wire and excitation test was carried out. The typical excitation test result is shown in Fig. 2. The five excitation test was carried out with changing sweep rate. The coil I_{c} was obtained to be 230 A and no I_{c} degradation and sweep rate dependence of the coil were observed during excitation test. The center magnetic field of the coil was obtained to be 2.62 T , and the load factor of the coil was comparable to 88% from the coil I_{c} value and generated magnetic field. We confirmed good workability of Cu addition $\mathrm{MgB}_{2} / \mathrm{Ta} / \mathrm{Cu}$ mono-cored wire for long direction.

Fig. 1 Typical Core J_{c}-B performances of the $1 \mathrm{at} \% \mathrm{Cu}$ addition MgB_{2} wire by the low temperature diffusion at $450^{\circ} \mathrm{C}$.

Fig. 2 The excitation test result of the small solenoid coil made by 100 m scaled long $\mathrm{MgB}_{2} / \mathrm{Ta} / \mathrm{Cu}$ mono-cored wire.
[1] T. Noda et al., J. Nucl. Materi. 329-333 Part. 2 (2004) 1590-1593.

