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A flow between two parallel plates which move with 
a c.onstant velocity in opposite directions becomes 
turbulent at the Reynolds number above son1e criti­
cal value if it starts with a strongly disturbed state. 
Tlus is called the plane Couette turbulence, the fluid 
motion in which is chaotic and never repeated. Nev­
ertheless, it is known that the regeneration cycle 
is present to sustain near-wall coherent structures 
such as streamwise vortices and low-velocity streaks 
though its theoretical description has not been es­
tablished. Here we report a periodic motion, dis­
covered by solving the N a vier- Stokes equation iter­
atively, which describes a full cycle of repetition of a 
series of dynamical processes including the formation 
and breakdown of coherent structures. Since it is un­
stable, this periodic motion is not attained in real­
ity. However, the turbulent state spends most of the 
time around it. As a result, the mean velocity profile 
as well as the root-mean-squares of velocity fluctua­
tions of the Couette turbulence coincide remarkably 
well with the temporal averages of the corresponding 
quantities of the periodic motion. 

We solve the incompressible Navier-Stokes equa­
tions numerically by using a spectral method for 
a Couette turbulence. The Fourier expansions are 
employed in the streamwise and spanwise direc­
tions, and the Chebyshev-polynomial expansion in 
the wall-normal direction. Numerical computations 
are carried out on 8,448 grid points at Reynolds num­
ber Re = Uhjv = 400, where U stands for half the 
difference of the two wall velocities, his half the wall 
separation, and v is the kinematic viscosity of fluid. 
The streamwise and spanwise computational periods 
are Lx = 5.513h and Lz = 3.770h, respectively. 

In the present numerical scheme the dependent 
variables are 31 for the mean streamwise and span­
wise components of velocity, 7, 424 for the wall­
normal velocity and 7, 936 for the wall-normal vor­
ticity. The resulting number N of degrees of freedom 
of the present dynamical system is therefore 15,422. 
An instantaneous state of the flow field and its tem­
poral evolution should be represented respectively, 
in principle, as a point and its trajectory in the N­
dimensional phase space spanned by all the indepen­
dent variables. In Fig. 1, we plot, with a grey line, 
a projection of the orbit over a period of 10, OOOh/U 
on the two-dimensional subspace spanned by the to­
tal energy input rate I and dissipation rateD which 
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Fig. 1. Two-dimensional projections of a turbulent 
and periodic orbit. 

are normalized by those for a laminar state. Green 
dots are attached at every 2h/U time unit. The orbit 
generally tends to turn clockwise. The variation of 
the orbit, which is confined in a finite domain, is far 
from periodic. On the contrary, the frequency spec­
trum of the total kinetic energy is continuous, which 
suggests that it may be in a chaotic state. 

Motivated by previous works on findings of the 
existence of periodic orbits embedded in a strange 
attractor in simple dynamical systems and on ob­
servations of the repetition of a series of dynamical 
processes in the present system, we searched a peri­
odic orbit which might be embedded in the turbulent 
flow, and found one. A periodic orbit thus obtained 
is drawn with a closed red line, the period of which 
is 64. 7hjU. Green dots on the turbulence trajectory 
crowd much densely near the periodic orbit, implying 
that the turbulent state often approaches the peri­
odic orbit. An example of such close approach is 
shown with yellow line which is a cut of the turbu­
lence orbit. The turbulent state approaches the peri­
odic orbit and follow it very closely for a while. The 
approach is, however, not permanent. The turbu­
lence trajectory is destined to go away from the peri­
odic orbit, sooner or later. In other words, this peri­
odic orbit should be of saddle nature. This intermit­
tent escape may be connected with the well-known 
bursting process which activates small-scale motions 
to enhance the energy dissipation. The present ex­
traction of a periodic orbit may offer the first (to 
our knowledge) direct demonstration of the real ex­
istence of a periodic motion embedded in a turbulent 
flow. 
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