
We develop a new Monte Carlo simulation code for
overcoming difficulty in conventional Monte Carlo meth-
ods, where the difficulty is caused by nonlinear terms in
fluid equations. To confirm the computational principle
of the new method, we solve Dirichlet problems in one di-
mensional (1D, i.e., radial) coordinate space in the first
trial. The code is called DIPS-1D (DIrichlet Problem
Solver in 1D coordinate space).

In general, the fluid equation expressed in the form
of the Fokker-Planck type equation can be rewritten as
the following initial-boundary value problem (t is re-
placed by t1 − t):

(L+ η∗)u+
∂u

∂t
= h∗(t, x) in Q, (1)

u(t1, x) = Φ(x) on M, (2)

u(t, x) = G(t, x) on S, (3)

where M is a bounded domain with the boundary ∂M,
Q =M × [0, t1), S = ∂M × [0, t1), and
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, (6)

h∗ = −h. (7)

If Φ, G, h, η, D and U are assumed to be given-smooth-
functions, the solutions of Eqs. (1)-(3) are known to be
described as
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(8)

where Et,x is the expectation operator given by the dif-
fusion process X(s) in coordinate space:

dXi(s) = σi
j(t,X(s))dW

j(s) + U i
∗(t,X(s))ds (9)

Fig. 1: Radial energy transport for electrons. Dotted
line represents the initial guess Φ(r). Dashed line repre-
sents the solution found by DIPS-1D at the temporary
step, and solid line represents the solution at the final
step.

satisfying X(t) = x. Here Dij = σi
kg

kℓσj
ℓ , g

kℓ is the
metric, W (s) is a Brownian process, χA is the indicator
function of a set A (e.g., χτ<t1 = 1 if τ < t1, and χτ<t1 =
0 otherwise), and τ is defined as

τ =



the first time ϑ ∈ [t, t1) that X(ϑ) leaves M

if such a time exists,
t1 otherwise.

Using the Monte Carlo simulation code DIPS-1D
based on Eq. (8), we solve iteratively the following radial
energy transport equation for electrons.
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(10)
where the initial condition is given as Φ(r) = T

(0)
ax −{
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ax − T

(0)
edge

}
r/a with T

(0)
ax = 2 keV and T

(0)
edge = 200

eV. The boundary conditions are G(t, r0) = Te(t, r0) =
Te(t, r0 + δr) − δr ∂Te/∂r(t, r0) and G(t, a) = Te(t, a) =
200 eV with sufficiently small δr and r0 (i.e., 0 <
δr/a, r0/a ≪ 1), and ∂Te/∂r(t, r0) = −1.8 keV/m. Te

is the electron temperature, and the constant density
is assumed to be n = 1 × 1019 m−3. κgB

e is the gyro-
Bohm thermal conductivity, a = 1 m is the minor ra-
dius, ⟨σv⟩rre is the radiative recombination rate coeffi-
cient, and S is the heat source. The steady-state solu-
tion of Eq. (10) is given in Fig. 1. Details are shown in
Ref. [1].
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