§26. Monte Carlo Simulation Code for Solving
Radial Fluid Equations

Kanno, R., Satake, S., Nunami, M.

We develop a new Monte Carlo simulation code for
overcoming difficulty in conventional Monte Carlo meth-
ods, where the difficulty is caused by nonlinear terms in
fluid equations. To confirm the computational principle
of the new method, we solve Dirichlet problems in one di-
mensional (1D, i.e., radial) coordinate space in the first
trial. The code is called DIPS-1D (DIrichlet Problem
Solver in 1D coordinate space).

In general, the fluid equation expressed in the form
of the Fokker-Planck type equation can be rewritten as
the following initial-boundary value problem (¢ is re-
placed by t; — t):

(L—&—n*)u—I—% = h.(t,z) in Q, (1)
u(ty, ) = &(x) on M, (2)
u(t,x) = G(t,z) on§, (3)

where M is a bounded domain with the boundary OM,
Q=Mx1[0,t1), 8 =0M x [0,t1), and
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hy = —h. (7)

If &, G, h,n, D and U are assumed to be given-smooth-
functions, the solutions of Egs. (1)-(3) are known to be
described as

U(t,ﬁ[ﬂ, ¢7G7h*777*a D7U*)

=FE; .| P(X(t1))exp {/: UNE X(S))ds} Xr=t1]

+ Et,:c

G(r, X (7)) exp { [ s X<s>>ds} x]

/tT h(s, X (s)) exp {/ts 1 (1, X(ﬁ))dﬂ} ds] 7
(8)

where E; , is the expectation operator given by the dif-
fusion process X (s) in coordinate space:

- Et@

dX"(s) = ok(t, X (s))dW/ (s) + UL(t, X (s))ds  (9)
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Fig. 1: Radial energy transport for electrons. Dotted
line represents the initial guess @(r). Dashed line repre-
sents the solution found by DIPS-1D at the temporary
step, and solid line represents the solution at the final
step.

satisfying X (t) = . Here D% = U,igkéoz, gk is the
metric, W (s) is a Brownian process, x4 is the indicator
function of a set A (e.g., Xr<t, = L7 < t1, and xr<t, =
0 otherwise), and 7 is defined as

the first time ¢ € [¢t,t1) that X () leaves M
T= if such a time exists,
t1 otherwise.

Using the Monte Carlo simulation code DIPS-1D
based on Eq. (8), we solve iteratively the following radial
energy transport equation for electrons.

4 <;TLT9> +1g <?"HgB 8Te> - g<av>rren2Te+S =0,

ot r or or

(10)
where the initial condition is given as &(r) = ég) —
{Téi? - Te(gge} r/a with Ti2 = 2 keV and TO) = 200

eV. The boundary conditions are G(t,19) = To(t,r9) =
To(t,mo + 0r) — 07 0T /Or(t,10) and G(t,a) = Te(t,a) =
200 eV with sufficiently small ér and o (e, 0 <
orfa,ro/a < 1), and 0T./0r(t,r9) = —1.8 keV/m. T,
is the electron temperature, and the constant density
is assumed to be n = 1 x 101 m=3. kg8 is the gyro-
Bohm thermal conductivity, @ = 1 m is the minor ra-
dius, (0v)yre is the radiative recombination rate coeffi-
cient, and S is the heat source. The steady-state solu-
tion of Eq. (10) is given in Fig. 1. Details are shown in
Ref. [1].
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