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The subject in this report is to consider diffusion
phenomena in a self-similar structure with magnetic is-
lands for the collisionless limit. In general, when an
equilibrium magnetic field has a symmetry, the equa-
tions for a magnetic field line can be written as Hamil-
ton’s equations with an integrable Hamiltonian. [1] If
the magnetic field is perturbed by a three-dimensional
fluctuating magnetic field, then magnetic islands appear
in the equilibrium. And in the statistical meaning, the
structure with islands has a self-similarity, which is a
generic feature in the structure described by a Hamil-
tonian with relatively large perturbation [2]. For exam-
ple, the island structure can be found in the edge region
of a stellarator equilibrium. While, recently the high
temperature divertor plasma operation is considered to
improve the energy confinement of helical devices. [3]
In the operation, the divertor temperature is expected
to become as high as several keV. [3] In the edge re-
gion of a helical system, the collisionless-plasma can be
realized by this operation. Therefore, the diffusion in
a self-similar structure with islands for the collisionless
limit will be the realistic issue.

The random motion in a fractal medium seems to
be very anomalous, but we can analytically understand
these properties by using the representation of random
walk in fractal space-time [4]. This analytical method
is based on the idea that from the particle’s viewpoint,
space-time seems to have non-integral dimensions, be-
cause the random particles are restricted to move on
only fractal structure except for islands. According to
Ref.[4], the diffusion theory of Rechester and Rosenbluth
[5] is developed to the situation with a self-similar struc-
ture with islands for the collisionless limit. We use as
an example, which is same as one in Ref.[5], a magnetic
configuration in cylindrical geometry;

B =B, + By(r) + 6B(r,0,z). (1)

We assume that the system is periodic in the z direction
with period 27 R in order to model toroidal periodicity
and both of the rotational transform ¢(r)/2n and the
shear d(¢/2n)/dr are small. Then the fluctuating mag-
netic field 6B can be written as

6B = Z 6B n(r) expi(mb — n¢) | + c.c., (2)
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where ( = z/R. Here, ( means ‘time’, because of B, # 0
and |B,| > |6B,| in this model. According to Ref.[4],
the random motion in a fractal structure except for is-
lands can be understood as the Brownian motion in
fractal space-time (7, (), where (7,{) are defined by the
Hausdorff length;

T— ,l)iigH;’(fractal-space), 3)

X pto . ﬂ .
A= })1_13) Hj (fractal-time). (4)

Here, @ and 3 are the fractal dimensions of space and
time, respectively. Hf;(X) is the length of the set X
divided by N parts {X;} and is given by

N
HY(X) = inf {Z dt
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where £ is the Hausdorff dimension of X, and d; is a
diameter of the i-th part X; and is measured in real
space-time (r, (). The diffusion coefficient Dy in fractal

space-time is given as
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where ¢(r) = 2n/u(r) is the safety factor. The distri-
bution function in real space-time is given by using the
path integral method; [4]
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where C' = {T'(1/2a)/a} (4D0C5)1/2a is the normalizing
factor; fjoo:) d(Ar) f(Ar,{) = 1, and T is the gamma
function. Thus, the mean square displacement in real
space-time is given by

<(Ar)2> =2D3P/e, (8)

where A = A/R and X is the collisional mean free path
in the z direction, and the diffusion coefficient in real
space-time, D, is described as
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