§35. Derivation of the Fractal Path Integral

Kanno, R., Nakajima, N.

By means of the method introduced in ref.[1], we derive a path integral constituted by fractal principal paths. Consider the following definition of a path $x(\tau)$;

$$
\begin{aligned}
& x(\tau) \equiv \lim _{M \rightarrow+\infty} x^{(M)}(\tau) \\
& \quad=\lim _{M \rightarrow+\infty}\left[x_{a}+\left(t_{b}-t_{a}\right) \int_{0}^{\tau} \mathrm{d} \tau^{\prime} v^{(M)}\left(\tau^{\prime}\right)\right](1)
\end{aligned}
$$

where $\tau \in[0,1]$. The velocity $v^{(M)}(\tau)$ is given by

$$
\begin{align*}
& v^{(M)}(\tau) \equiv \frac{x_{b}-x_{a}}{t_{b}-t_{a}}+\left\{\frac{\pi D}{t_{b}-t_{a}}\right\}^{1 / 2} \\
& \quad \times \sum_{n=0}^{M} \sum_{k=0: k \in\left\{k_{p}(n)\right\}}^{q^{n}-1} C_{n, k} Z_{n, k}\left(q^{n} \tau\right), \tag{2}
\end{align*}
$$

where $C_{n, k}$ is the expansion coefficient. The summation $\sum_{k: k \in\left\{k_{p}(n)\right\}}$ means the selective sum of k from the set $\left\{k_{p}(n)\right\}$ which is defined by

$$
\begin{aligned}
& \left\{k_{p}(n)\right\} \equiv\left\{k_{p} \mid \text { select the number of } p^{n}\right. \text { from } \\
& \left.\quad \text { a set }\left\{m \mid m=\left[q^{n} \tau_{*}\right]_{\mathrm{G}} \text { for } \forall \tau_{*} \in[0,1]\right\}\right\} .(3)
\end{aligned}
$$

Here q and p are any natural numbers that should satisfy the condition $1 / 2 \leq \log _{q} p \leq 1$. The selection law is arbitrary. The function $Z_{n, k}\left(q^{n} \tau\right)$ is any orthonormal function, which satisfies the following three conditions;

$$
\left.\begin{array}{l}
Z_{n, k}\left(q^{n} \tau\right) \\
= \begin{cases}\text { a function of } \tau & \text { for } q^{n} \tau \in[k, k+1 \\
0 & \text { for the others, }\end{cases} \\
\qquad \int_{0}^{1} \mathrm{~d} \tau Z_{n, k}\left(q^{n} \tau\right)=0
\end{array}\right\} \begin{aligned}
& \int_{0}^{1} \mathrm{~d} \tau Z_{n, k}\left(q^{n} \tau\right) \cdot Z_{i, j}\left(q^{i} \tau\right) \\
& = \begin{cases}1 & \text { for } n=i \text { and } k=j \\
0 & \text { for the others. }\end{cases}
\end{aligned}
$$

Here a function given by

$$
\begin{equation*}
G_{n, k}\left(q^{n} \tau\right)=\int_{0}^{\tau} \mathrm{d} \tau^{\prime} Z_{n, k}\left(q^{n} \tau^{\prime}\right) \quad \text { for any } \tau \tag{7}
\end{equation*}
$$

represents any generator producing a singlevalued continuous fractal curve, and the initiator I is given as $I=x_{a}+\left(x_{b}-x_{a}\right) \tau$.

Suppose that the contribution of a path $x(t)$ to the path integral is proportional to $\exp \{-\hat{S}[x(t)] / D\}$, where the function $\hat{S}[x(t)]$ is the modified action defined as $\hat{S}[x(t)] \equiv$ $\left\{T /\left(t_{b}-t_{a}\right)\right\}^{\beta-1} S[x(t)], T$ is the characteristic time, and β is a real number: $0 \leq \beta \leq 2$.

By summing over all paths given by eq.(1), the path integral is derived as follows

$$
\begin{align*}
& f(b, a)=\lim _{M \rightarrow+\infty}\left\{\frac{1}{\pi D T}\left(\frac{T}{t_{b}-t_{a}}\right)^{\beta}\right\}^{1 / 2} \\
& \quad \times \exp \left\{-\frac{\left(x_{b}-x_{a}\right)^{2}}{D T}\left(\frac{T}{t_{b}-t_{a}}\right)^{\beta}\right\} \\
& \quad \times \prod_{n=0}^{M} \prod_{k=0: k \in\left\{k_{p}(n)\right\}}^{q^{n}-1} \int_{-\infty}^{+\infty} \mathrm{d} \hat{C}_{n, k} \\
& \quad \times \exp \left\{-\pi\left(\hat{C}_{n, k}\right)^{2}\right\} \tag{8}
\end{align*}
$$

where $\prod_{k: k \in\left\{k_{p}(n)\right\}}$ means the product of k from the set $\left\{k_{p}(n)\right\}$, and $\hat{C}_{n, k}=\left\{T /\left(t_{b}-\right.\right.$ $\left.\left.t_{a}\right)\right\}^{(\beta-1) / 2} C_{n, k}$. This path integral is constituted by the only fractal curve produced by a generator $G_{n, k}\left(q^{n} \tau\right)$, so we call the integral (8) the fractal path integral (FPI).

We define here the average of arbitrary functional $F[x(\tau)]$ as follows

$$
\begin{aligned}
<F>= & \lim _{M \rightarrow+\infty} \prod_{n=0}^{M} \prod_{k=0: k \in\left\{k_{p}(n)\right\}}^{q^{n}-1} \\
& \int_{-\infty}^{+\infty} \mathrm{d} \hat{C}_{n, k} F\left[\left\{\hat{C}_{n, k}\right\}\right] \exp \left\{-\pi\left(\hat{C}_{n, k}\right)^{2}\right\} .(9)
\end{aligned}
$$

Using this definition of the average of functional, one can investigate the property of principal paths of any FPI.

References

1) Kanno,R. and Ishida,A.,
J.Phys.Soc.Jpn63(1994)2902.
