
§29. Diffusion on a Self-similar Structure 

Kanno,Il. 

\Vc analyze diffusion phenon1ena on a self­
sirnilar structure with fractal in the tirne-axis. 
The behavior of this rnotion shows the non­
Gaussian-type. This behavior can be seen nu­
rnerically, for exan1ple, for the field-line trans­
port in stochastic n1agnetic fields between mag­
netic islands1). Previous analytical studies at­
ternpt to treat the rnotion in real space-tirne 
with integral dimensions. To clarify the rela­
tion between the non-Gaussian-type behavior 
and the fractal nature, "Yve choose a different 
starting point. We notice that the randorn par­
ticle is able to n1ove on only fractal mediun1 
with fractal in the tirne-axis. This means that 
frorn the particle's viewpoint, space-tin1e seen1s 
to have non-integral dirnensions, i.e. we can 
sa~ that this n1otion is the randon1 walk in frac­
tal space-tirne. 

It is well known that in real space-tirne, a 
fractal structure has infinite or zero length . To 
rneasure a finite and non-zero length of any self­
sirnilar set X, usually the Hausdorff length He 
is used; 

He(X) = lim Hpe(_X) =constant for onlv £, 
p---+0 J 

(1) 
where e is a real-nurnber and describes the 
Hausdorff dirnension of the set X, and H~( _X) 
is a length of X divided by JV parts {Xi} and 
is given by 

H!(X) = inf {~d/1 0 < d;::; p,X <;;; iQ
1 
X;}. 

(2) 
Here di is a diarneter of the i- th part _Xi and 
is rneasured in real-space ·with integral dirnen­
sions. By using the Hausdorff length , arbitrary 
fractal-space and fractal-tirne can be n1easured. 
Now; we assurne that these Hausdorff lengths 
can be used to specify coordinates ( x, i), and 
derivatives and integrals of a function on these 
coordinates are acceptable. Fractal space-tirne 
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( x, t) is defined by these Hausdorff lengths. 

i = Ha(x), t = H f3 (t). (3) 

Here, space-tirne with a = 1 and f3 = 1 n1eans 
real space-tirne. 

By following the path integralrnethod devel­
oped by Fcynrnan2

) , we carry out integrations 
and finally obtain a result as follows. 

Xb- Xa 

{ 
1 

} 
1/2 { ( - - )2 } 

f(b,a)= 4nD(tb-ta) exp -4D(tb-ta) . 
(4) 

In real space-tirne, the transition probabil­
ity f can be seen to be proportional to 
exp {-z2

a j4Drf3} under the expectation that 
important contributions to the integral off will 
occur only for srnall z and r, where z = i 1/a 
and r = T- 11f3 are n1easured in real space-tirne. 
Thus, by re-normalizing the probability in real­
space, the equation ( 4) can be rewritten as fol­
lows. 

1 { 2 2a } 
f(z, r) = B exp - 4Drf3 , (5) 

where B is the nonnalizing factor. Using 
eq.(5), \ve can calculate R(r) - z2 and G = 
- -2 
z4 /(3z2 ) -1; 

R(r) = 
( 4D) 1far (.l...) 
____ :..._2_a :__ (3 /a 

r (2~) r ' 
(6) 

r (ia) r (2:) 
_.:___.:_______.:.....__:__ - 1 ' 

3 [ r (2:)] 2 
(7) G = 

where r is the garnrna function. In real space­
tirne, the randorn walk shows the non-Gaussian 
process, if G -=/: 0, i.e. a -=/: 1. On the other 
hand, for a case of f3 -=/: 1 and a = 1, the pro­
cess represents the fractional Brownian process . 
Thus, we have the unified representation of the 
Brownian process (a = 1, f3 = 1), the frac­
tional Brownian process (a = 1, (3 -=/: 1), and 
the non-Gaussian process with fractal nature 
(a-=/: 1). 
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