§14. A Spectral Method in Spherical Coordinates with Coordinate Singularity at the Origin

Kageyama, A., Kida, S.

In a spherical coordinate system (r, θ, ϕ), special cares should be taken not to degrade numerical accuracy and efficiency which might originate from coordinate singularities along the axis $(\theta=0, \pi)$ and at the origin $r=0$. Although the coordinate singularity along the axis has been studied extensively so far, there are a very few literatures on that at the origin. The purpose of the present work is to provide a new spectral method in spherical coordinates including the origin.

The difficulty in spectral methods with a coordinate singularity relates to an analytical property to be satisfied by infinitely differentiable solutions near the singularity. This is called the pole condition. It is proved that any analytical function $f(r, \theta, \phi)$ is expanded around the origin as

$$
\begin{equation*}
f(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} r^{l} F_{l m}(r) Y_{l m}(\theta, \phi) \tag{1}
\end{equation*}
$$

where $F_{l m}(r)$ is an even function of r,

$$
\begin{equation*}
F_{l m}(-r)=F_{l m}(r) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F_{l m}(0)\right|<\infty \tag{3}
\end{equation*}
$$

Equations (1)-(3) are the pole condition at the origin in the spherical coordinate system when it is expanded in terms of the spherical harmonics in the (θ, ϕ) space [1].

Our spectral method is constructed on the basis of the pole condition described above. Suppose that a function $f(r, \theta, \phi)$ is governed by a differential equation defined in a sphere $0 \leq r \leq 1,0 \leq \theta \leq \pi$, and $0 \leq \phi<2 \pi$. We expand $f(r, \theta, \phi)$ as (1) and the coefficient $F_{l m}(r)$ in terms of Chebyshev polynomials of even order as,

$$
\begin{equation*}
F_{l m}(r)=\sum_{n=0}^{N} F_{l m n} T_{2 n}(r) \tag{4}
\end{equation*}
$$

which is justified by the property of (2) and $T_{2 n}(-r)=$ $T_{2 n}(r)$. Here, N is the truncation mode number. Note that the problem of unnecessarily refined resolution near the origin has been avoided automatically in this expansion. By choosing such radial node points as

$$
\begin{equation*}
r_{j}=\cos \left(\frac{j \pi}{2 N}\right), \quad j=0,1,2, \ldots, N \tag{5}
\end{equation*}
$$

we can invoke the fast Fourier cosine transformation to calculate the summation in (4).

When the problem to be solved is quadratically nonlinear, a care should be taken in dealing with the nonlinear terms. Suppose a nonlinear term of

$$
\begin{equation*}
h(r, \theta, \phi)=f(r, \theta, \phi) g(r, \theta, \phi) \tag{6}
\end{equation*}
$$

According to our algorithm, we expand f, g, and h as

$$
\begin{align*}
f(r, \theta, \phi) & =\sum_{l=0}^{\infty} \sum_{m=-l}^{l} r^{l} F_{l m}(r) Y_{l m}(\theta, \phi) \\
& =\sum_{l=0}^{\infty} r^{l} \widetilde{F}_{l}(r, \theta, \phi) \tag{7}\\
g(r, \theta, \phi) & =\sum_{l=0}^{\infty} \sum_{m=-l}^{l} r^{l} G_{l m}(r) Y_{l m}(\theta, \phi) \\
& =\sum_{l=0}^{\infty} r^{l} \widetilde{G}_{l}(r, \theta, \phi) \tag{8}\\
h(r, \theta, \phi) & =\sum_{l=0}^{\infty} \sum_{m=-l}^{l} r^{l} H_{l m}(r) Y_{l m}(\theta, \phi) \\
& =\sum_{l=0}^{\infty} r^{l} \widetilde{H}_{l}(r, \theta, \phi) . \tag{9}
\end{align*}
$$

Then, what is required in our method is to calculate $H_{l m}(r)$ from $F_{l m}(r)$ and $G_{l m}(r)$. Notice that numerical errors would be amplified if a spherical expansion of $h(r, \theta, \phi)$ were divided by r^{l} to obtain $H_{l m}(r)$, since r^{l} could be too small when l is large and r is small. This problem is resolved if $H_{l m}(r)$ is calculated from $\widetilde{F}_{l}(r, \theta, \phi)$ and $\widetilde{G}_{l}(r, \theta, \phi)$. An accurate and fast algorithm to calculate $H_{l m}(r)$ using the fast Fourier transform can be found in [1].

We have applied the present algorithm to a free decay of magnetic field in a sphere to check its validity and accuracy. Consider an electrically conducting solid sphere of radius a with a finite electrical resistivity. A magnetic field is given at an initial time $t=0$ with an arbitrary distribution. Since the type of boundary condition is not important in the present algorithm, the outer region of the sphere $(r>a)$ is supposed to be a perfect insulator, or a vacuum for simplicity. It is physically evident that the magnetic field decays with time due to the finite resistivity. An analytical expression of decaying magnetic field is provided in [2]. High-accuracy of this method is confirmed [1].

References

1) A. Kageyama and S. Kida, NIFS Report No. 636
2) H.K. Moffatt, Magnetic Field Generation in

Electrically Conducting Fluids, (Cambridge University Press, London, 1978), pp. 36-40

