§13. Fast Responses in L/H Transition

Iwasaki, T., Toda, S., Itoh, S.-I., Yagi, M. (Kyushu D.) Itoh, K.

The plasma profile in core region was found to change in a much faster time scale than the diffusion time scale after the UH transition [1]. Understanding of the mechanism of the fast response not only reveals the physics of H-mode but also provides a dependable prediction for the burning dynamics in the core plasma of a fusion reactor.

To investigate the transient response of the electron temperature, let us start with the transport equation for the electron temperature,

$$
\frac{\partial}{\partial t} \Big(\frac{3}{2} n_e(r, t) T_e(r, t) \Big) = - \nabla \cdot q_e(r, t) + \Sigma Q(r) \tag{1}
$$

where n_e , T_e , q_e and $\overline{\Sigma}Q$ represent the electron density, temperature, heat flux and sources/sinks, respectively. The boundary conditions are set to be $q_e(0,t) = 0$ and T_e (*a*,*t*) = *0*, where *a* is the plasma minor radius. For simplicity, we assume that the density is constant in this model.

The non-local transport model [2] has been formulated and successfully applied to the problems of transient responses, i.e., power switching and power modulation experiments in W7-AS. Extending the analysis of the heat pulse propagation, we here study the fast responses in plasma profile after the L/H transition. A generalized formula of the heat flux is employed as,

$$
q_e(r,t) =
$$

$$
-\int_0^a n_e(r^{\prime},t)\chi_e(r^{\prime},t)K_f(r,r^{\prime})[\lambda \nabla T_e(r,t) + (1-\lambda)\nabla T_e(r^{\prime},t)]dr^{\prime}
$$

where χ_e is the heat diffusivity. The kernel is chosen as

$$
K_f(r,r') = \frac{r}{r'} \Big[C_{local} \delta(r-r') + C_{global\sqrt{\pi}l} exp\Big\{-\Big(\frac{r-r'}{l}\Big)^2\Big\} \Big].
$$

where l is the half width of non-local interactions, $\delta(r - r')$ is a delta function, and $\lambda(0 \le \lambda \le I)$, C_{local} and C_{global} (*C*_{local} + $C_{global} = 1$) are numerical constants. The interaction of fluctuations with a short radial correlation length and those with a long correlation length $(\sim l)$ is modeled into the kernel of integral. In the following calculations, the parameters are chosen as $\lambda = 0.5$, $C_{global} = 0.1$ and $l/a = 0.5$, and the electron density is fixed as $n_e(r,t) = 5 \times 10^{19} \text{m}^{-3}$.

The energy transport equation Eq. (1) is solved under the condition given in the previous section, and the temporal evolution of the temperature profile after the L/H transition is analyzed. In this calculation, JET-like parameters, i.e., major radius $R = 2.85$ m, minor radius $a = 0.95$ m and heating power $P = 10$ MW, are used. In H-mode regime, the diffusivity is reduced only in the

edge region of the plasma ($r / a \ge 0.8$). At the L/H transition, the reduction of diffusivity is set instantaneously.

We investigate the transient response after L/H transition. Fig. 1 shows the temporal evolution of the electron temperature ΔT in the core region (at $r / a = 0.1$), where ΔT is defined as $\Delta T = (T - T^L) / (T^H - T^L)$, which represents the deviation from L-mode temperature profile. The solid line and dashed line correspond to the non-local model and local model, respectively. The horizontal axis is normalized to the typical energy confinement time, τ . Now we set to be $\tau = 40$ msec. L/H transition occurs at $t / \tau = 0$. As soon as the transition in χ_e occurs in the edge region, the temperature of the core plasma responds. It's time scale is much faster than that in diffusion process. The non-local transport model reproduces the fast response in the core plasma after L/H (or H/L) transition [3]. From our simulation, it is found that $C_{global} = 0.1$ is enough to reproduce the fast responses observed in experiment. The fast responses reproduced by the non-local model is almost independent of the functional form of *Xe.*

In summary, a transport model, in which the non-local effect is taken into account, was used to analyze the fast response after LIH transition. The fast response in the core plasma after L/H (or H/L) transition was reproduced based on this model. Our method provides a general model, by which other types of transient phenomena could be explained in a unified way.

Fig.1 Transient response of the core temperature after the LIH transition. The result of the nonlocal model (solid line) reproduces a fast response, in comparison with conventional diffusive model (dashed line).

References

- [1] Cordey, J. G., et al., Plasma Phys. Control. Fusion. 36 (1994) A267.
- [2] Iwasaki, T., Itoh, S. -I., Yagi, M., Itoh, K., Stroth, U., J. Phys. Soc. Jpn. 68 (1999) 478.

[3] Iwasaki T., et al, IAEA-F1-CN-69/THP2/38 (1998).