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The development of the statistical theory for the strongly

turbulent plasma has been one of the main subjects in the

plasma physics.  Theories have been developed by use of

various methods.  Previous theories often assume, at least

at the final stage of the theoretical scheme, the presence of

an eddy viscosity type drag and employ the Markovian

approximation.  One direction of the recent progress is to

investigate the basis of this analysis.  Namely, the basic

nonlinear equations are time-reversal in the absence of the

dissipation due to molecular viscosities. When turbulent

interactions are renormalized, the renormalized terms have

non-Marikovian from [1,2]. The induction of irreversibility

in the stochastic evolution equations is related to the

approximations. Another key issue in progresses is the

recognition that treating the coherent part and incoherent

part (nonlinear noise) of nonlinear effects in an equal-

footing manner is essential in theory of plasma turbulence.

The incoherent part has influences in dynamics such as

subcritical excitation and self-sustaining [3-5], enhanced

transport near stability boundary [6], acceleration of

relaxation, access to nonlinear stationary state [2], excitation

of global modes [7], etc.   Driven by the progress of direct

nonlinear simulations for kinetic plasmas, importance of

nonlinear fluctuating force has also been recognized [8].

Nevertheless, the research in this direction is still limited.

For instance, refs. 2-5 are based upon fluid approximation.

Kinetic description of plasma turbulence has been examined

by Kadomtsev by a heuristic model approach [9].

In this work, we extend the previous analysis on the line of

Mori's method [10]. A set of basic kinetic equations to

describe the plasma strong turbulence is derived introducing

the memory functions and the fluctuating force. Explicit

formalisms of memory functions for electron/ion distribution

functions and for the fluctuating potential are obtained

within three wave interaction approximation. Nonlinear

dispersion equation including the self-noise scattering term

is derived. Nonlinear dispersion relation equation contains

the kinetic description of the drag terms which include the

wave-particle interactions. The self-noise scattering term for

the case of strong turbulence also includes the wave-particle

interactions.  The terms naturally reduce to the quasilinear

diffusion terms as well as the collision terms of thermal

fluctuation in the limiting cases.

Roles of coherent and incoherent nonlinear terms are

discussed.  First, the access to nonlinear stationary state is

discussed.  Then, two mechanisms in the dynamical

development of wave spectrum are considered. One

corresponds to the resonance broadening, and the other is the

non-modal wave excitation due to the strong self-noise

scattering. Both include the kinetic description of wave-

particle interactions. Non-modal wave excitation is the

current topic as well as the long lasting problem problem of

spectrum cascade [11].  

As an example, we illustrate here the accumulation of quasi-

modes.  It is shown that the incoherent emission leads to an

accumulation of quasi-mode at the frequency of

   � k = 2�� k/2

where   �� k�  indicates the dispersion relation of mode.

Figure 1 shows an example, where accumulation of the

incoherent quasi-modes is demonstrated.  The incoherent

emission near   � �0  constitutes another accumulation

frequency of quasi-modes.  This accumulated emission is

important in the study of zonal flows and streamers.  Here

we focus to the local representation, even though the non-

local disparate scale interactions are important [12].  
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Fig.1:  Frequencies of the modes and induced quasi-modes.

Thick solid line denotes the eigenmode, and thin lines

indicate examples of quasi-mode.  In this figure, each line

for quasi-mode    � k = �� k � + ��� k��  is drawn by varying

 k�  and keeping   k��  constant.  
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