§7. Study on Shock Waves Leading to Investigation of Sheath in Negative-Ion Plasmas

Ichiki, R., Kanazawa, S. (Oita Univ.), Yoshimura, S., Shindo, M. (Yokohama Natl. Univ.)

1. RESEARCH PROJECT

An important issue of the plasmas containing considerable amount of netative ions is to make clear the physics of sheath-forming in them. Research of the sheath in negative ion plasmas is promising to contribute to further development of negative ion sources for NBI technology and high-density plasma processing.

Our project is to contribute the advancement of understanding sheaths formed in negative ion plasmas through a study on shock waves excited in such plasmas. The research project is based on our original idea, i.e. ion acoustic shock waves can have a negative amplitude theoretically and the theory predicting the negativeamplitude shock is quite analogous to the theory of sheath¹). Here, we investigate characteristics of shock excitation in a double plasma device, especially in plasmas with high negative ion concentration.

2. ADVANCEMENT OF RESEARCH

First, we numerically evaluated the range of possible Mach numbers of negative-amplitude shocks following the theory of Sagdeev potential²⁾. As a result, it was first uncovered that the range of possible Mach numbers depends strongly on the negative ion concentration r, and the gray zone shown in Fig. 1 was proved to be the possible region.

Fig. 2 shows a schematic of excitation mechanism of shock waves in the double plasma device, called the double plasma method. Biasing a positive ramp voltage to the anode of the driver region moves positive ions toward the target region to excite compressive density fluctuation. On the other hand, a negative ramp voltage produces a rarefied fluctuation which develops to a negative-amplitude shock

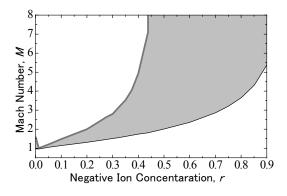


Fig. 1 Theoretically evaluated range of possible Mach number of negative-amplitude shock waves in negative ion plasmas.

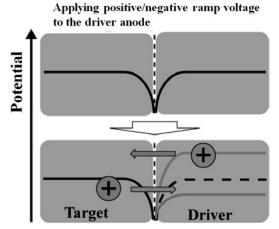


Fig. 2 Schematic of the double plasma method to excite ion acoustic shock waves.

wave.

We observed the electron saturation current with a plane Langmuir probe to detect excitation and propagation of negative-amplitude shocks. When the negative ion concentration was 0.79, a shock-like signal shown in Fig. 3 was observed. This signal has a negative fluctuation and involves negative steepening of the wave front. Investigating the Mach number by the time-of-flight method revealed that the ramp voltage above 7 V is necessary to be applied for negative shock propagation. Consequently, we succeeded in exciting the negative-amplitude shocks in plasmas with high negative ion concentration.

We believe that such phenomenon has common physical properties to sheath in negative ion plasmas so that to examine the negative-amplitude shocks leads us to comprehending sheath behavior clearly.

R. Ichiki, Dr. Thesis, Kyushu Univ., 2004.
F. F. Chen, *Introduction to Plasma Physics and Controlled Fusion 2nd ed.*, Plenum Press, 1984.

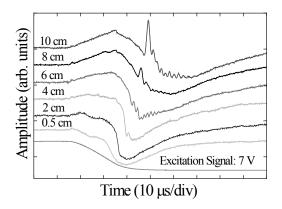


Fig. 3 A shock-like signal observed in the double plasma device for the negative ion concentration as high as 79%.