§8. Analysis of J_c Properties in High Magnetic Fields for Low Activation Superconducting Wires

Hishinuma, Y., Takeuchi, T. (NIMS)

It is necessary to consider the neutron irradiation effect on superconducting magnets of an advanced fusion reactor. V-based alloys and MgB₂ compound may be apply for a future fusion magnet because they have shorter decay time of induced radioactivity.

As the first trial to research V-based and MgB₂ superconducting materials for fusion application, we selected Laves phase (V₂(Hf,Zr)) and V₃Ga compounds as V-based low activation superconducting materials because they have high upper critical magnetic fields (H_{c2}) above 20 T and better mechanical property than Nb-based compound. The mechanical property of superconducting wire is very important when large scaled magnet is constructed. The advantages of MgB2 compound for a future fusion application are not only low activation but also high T_c (39 K) and low cost. The wire fabrication process of MgB₂ is very simple compared with the other superconducting materials. However, critical current density (J_c) properties of V-based and MgB₂ compound superconductors are lower than those of Nb-based superconductors such as Nb₃Sn and Nb₃Al at present, J_c properties of them must be improved in order to apply for fusion reactor.

We have studied the new wire fabrication process of $V_2(Hf,Zr)$, V_3Ga and MgB_2 compound wires having low activation sheath materials in order to improve J_c properties, and investigated the possibility of the application for a future fusion magnet based on J_c property under the high magnetic field. J_c measurements under the high magnetic field were carried out using 18T class High-Field Superconducting Magnet system in Tsukuba Magnet Laboratory of National Institute for Materials Science (TML-NIMS) shown in Fig.1.

The present status of J_c -B performances of V-based and MgB₂ compound superconducting wires in our researches are shown in Fig. 2. Typical present J_c values of various Nb-based and MgB₂ compound wires are also shown for the comparisons $^{1)$ - $^{3)}$. J_c properties of V-based compounds in our research are lower than those of Nb-based compounds at present, but J_c properties of new wire fabrication process in this study were improve compared with conventional process in each case. We thought that V-based superconducting materials had higher potential to J_c improvement though the progress of further process optimization and V_3 Ga compound showed clear possibility of candidate materials for Nb-system superconductor, especially.

 J_c properties of MgB₂ compounds in our research (Cu addition) are lower than SiC doped MgB₂ compounds under the magnetic field above 10 T. However, J_c property of Cu addition MgB₂ wire was higher than SiC doped

 ${
m MgB_2}$ under the low and middle magnetic field below 6 T. ${
m MgB_2}$ compound have possibility of alternative materials as Nb-Ti alloy wire for "Low activation superconducting magnet" by the progress of further J_c improvement.

Fig.1 18T class High-Field Superconducting Magnet in Tsukuba Magnet Laboratory of National Institute for Materials Science (TML-NIMS)

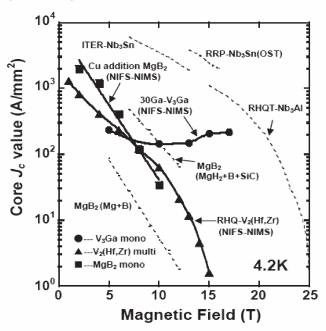


Fig.2 The present status of J_c -B performance on V-based and MgB₂ compound wires in this study.

References

- 1) P. J. Lee et al: Microstructure, microchemistry and the development of very high Nb_3Sn layer critical current density, IEEE Trans. Appl. Supercond., 15, (2005), pp.3474-3477.
- 2) A. Kikuchi et al: Nb₃Al conductor fabricated by DRHQ (Double Rapidly-Heating/Quenching) process, IEEE Trans. Appl. Supercond., 11, (2001), p.3968-3971.
- 3) A. Matsumoto et al: Effect of SiO_2 and SiC doping on the powder-in-tube processed MgB_2 tapes, Supercond. Sci. and Tech., 16, (2003), p.926-930.