
Huge transport power and strong fluctuations are
characteristics of turbulence. Anomalous fluctuations
of velocity field drives more the fluctuations and sin-
gular nature of the scalar and magnetic field. An im-
portant nondimensional parameter in the problem of the
scalar transfer in fluid and magneto hydrodynamic tur-
bulence is the Schmidt number Sc = ν/κ (or the mag-
netic Prandtl number) the ratio of the molecular viscos-
ity to the molecular diffusivity. When Sc = O(1), the
dissipation lengths for the velocity and scalar are of the
same order, but for larger Schmidt number, the diffusive
length ηB become smaller than the Kolmogorov length
η according to ηB = Sc−1/2η. Batchelor obtained the
spectrum of scalar variance in the viscous-convective and
far diffusive ranges beyond 1/η as

EB
θ (k) = CBχ(�/ν)

−1/2k−1 exp
(−κk2/|γ∗|

)

which rolls off rapidly in the far diffusive range, where
γ∗ is a representative value of the smallest eigenvalue
of the strain tensor [1]. Kraichnan studied the scalar
spectrum for the rapidly changing random velocity field
and obtained

EK
θ (k) = CBχ(�/ν)

−1/2k−1(1 +
√
6CBkηB)

× exp
(
−
√

6CBkηB

)
,

where � and χ are the mean energy dissipation rate, the
mean scalar variance dissipation rate, respectively and
CB is a nondimensional constant [2]. The difference be-
tween two theories lies in the facts that Bathelor’s theory
is a mean field theory in the sense that γ∗ is assumed to
be constant and estimated as |γ∗| = CB(�/ν)

1/2 where
(�/ν)1/2 is the mean strain rate, while the effects of fluc-
tuations of the strain are included in Kraichnan’s theory.

We have numerically examined the scalar spectrum
in the viscous-convective and far diffusive ranges for very
high Schmidt numbers of Sc = 200, 1000 by using the hy-
brid code which uses the spectral method for the incom-
pressible velocity and the combined compact finite differ-
ence method for the passive scalar. For the case of high
Schmidt number the high Reynolds number is not neces-
sary condition. We set Rλ about 42 so that the number
of grid points for the velocity was 2563 while 20483 for
the scalar to resolve the small scales of the passive scalar
in the far diffusive range. In order to obtain well con-
verged statistics we integrated the equations longer than
72 large eddy turn over times for the time average. This
remarkably long time computation was achieved due to
the high performance of the hybrid computation. The
Batchelor constant is found to be CB = 5.7 which is

larger than 4.9 by Donzis et al. [3] . The spectrum in the
far diffusive range is exponential as seen in Fig.1 which is
consistent with the Kraichnan spectrum. We also com-
puted the probability density functions (PDFs) for the
eigenvalues λ3 < λ2 < λ1 of the strain field as in Fig.2.
The PDF of λ3 is strongly non-Gaussian. Although the
Batchelor spectrum for Eθ(k) decays in Gaussian form,
it is reasonable to replace the mean strain rate γ∗ by the
fluctuating negative strain rate λ3 and to take an average
over the PDF of λ3 as

Eav
θ (k) =

∫ 0

−∞
P (λ3)E

B
θ (k, λ3)dλ3.

The averaged spectrum Eav
θ (k) thus obtained is com-

pared to DNS spectrum in Fig.1, which shows that the
exponential decay of the averaged spectrum well agrees
with DNS data. This means that the far tail of the scalar
spectrum is strongly governed by the strong fluctuation
of the strain rate, the intermittency.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0  0.5  1  1.5  2  2.5  3  3.5  4

χ-1
(ε

/ν
)1

/2
k
E

θ(
k
)

kηB

Sc=1000 Av.(DNS)
DNS

Fig. 1: Comparison of Eav
θ (k) (long line) averaged over

PDF of the most compressible eigenvalue of the strain tensor

and EDNS
θ (k) (short line) computed by DNS at Rλ = 42.
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Fig. 2: PDF of eigenvalues of the strain tensor.at Rλ = 42.
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