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When compared to the study of the statistical 
properties of NS and MHD turbulences such as energy 
spectrum, scaling exponents, stability of turbulence has 
attracted little attention. Turbulence is a random phe­
nomena, highly mixing, and very sensitive to small dis­
turbances. When the turbulence is disturbed, the phase 
orbit of the NS and/or MHD solution in the infinite di­
mensional phase space would be mnch different from 
the undisturbed NS or NIHD would have. However, 
it is unrealistic to trace the orbit in the phase space. 
Rather, it is more appropriate and physically important 
to consider the response of the statistical quantities of 
the turbulence. 

It is well known that study of response of a sys­
tem in thermal equilibrium was essential to construct 
the nonequilibrium statistical mechanics, and to under­
standing of the phenomena. For example, the response 
of a canonical ensemble to change of temperature is de­
scribed as the specific heat which is related to the fluc­
tuations of the energy, In the nonequilibrium statistical 
mechanics, generally, it is well known that response of a 
system is related to the correlation of the thermal fluc­
tuations, the fluctuation-dissipation theorem. By anal­
ogy, we hope that to examine the response of MHD and 
NS turbulences in the statistical sense leads to deeper 
understanding of turbulence dynamics and would be 
helpful for construction of statistical mechanics of tur­
bulences. 

When the NS turbulence in a steady state is dis­
turbed, it would restore the equilibrium state if the tur­
bulence is statistically stable. We have examined the 
way of return to the stationary state by using high res­
olution DNS. The velocity amplitudes in the wavenum­
ber spacet is disturbed while the phases are unchanged, 
so that the energy spectrum is distorted slightly_ Ac­
tually the slope of the energy spectrum is slightly in­
creased (decreased) but with the same total energy, 
that is Epurtb(k) = (k/k.)' E(k), where E(k) is the sta­
tionary spectrum before the disturbance is added and 
161 «1. k. is so chosen that J Epurtb(k)dk = J E(k)dk. 

The deviation of the disturbed spectrum from the 
equilibrium state is defined as 

WE(k, t - s) = Epurtb(k, t - s) - E(k). 

We have computed the relaxation of WE(k,t - s) by 
DNS. Figure 1 shows the evolution of We(k, t - s) for 

6 = 0.1 at R, = 235. At wavenumbers higher than 
k. = 4, We(k, t - s) once grows and then decays with 
oscillation. This is due to enhanced energy transfer by 
increase of total shear by all the Fourier components 
below k. Figure 2 shows each band relaxation as func­
tions of time difference which is defined as 

C(k, t - s) = WEek, t - s)/WE(k,O) 

Time is scaled by the total strain 1-'( k) 

J Jok P' E(p )dp. Behavior of the energy transfer 
through k is found to be consistent with the above ex­
planation (figure not shown). 
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Fig.1 Relaxation of the purturbed energy spectra 
toward the stationary state. R).. = 235, ~ = 0.1, k .. = 
4. 
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Fig.2 Relaxation of each band correlation function 
C(k,t-s) = WE(k,t-s)/WE(k,O). 
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