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A material surface is the fictitious two-dimensional ob
ject which consists of a same set of fluid particles. In 
other words, a point, whose position vector xp(t) on the 
surface, is advected by fluid motion according to the ad
vection equation , dXp/dt = u(xp(t) , t). Here , u(x , t) is 
the velocity field , and is, hereafter , assumed to be gov
erned by the Navier-Stokes equation of an incompress
ible fluid. Since a material surface may be regarded as a 
boundary of two parts of a fluid, statistics of its deforma
tion have been intensively investigated by many authors 
as a foundation of the mixing by fluid motions. 

If the velocity field is turbulence, a material surface 
is deformed in a quite complicated manner. We show a 
typical material surface deformed by turbulence in Fig.1, 
which is a result of direct numerical simulation of solving 
temporal evolutions of both of the velocity field and the 
material surface simultaneously. An important feature of 
this system is the exponential growth of total area, A (t), 
of the surface. We plot temporal evolutions of the area 
of material surface in Fig.2 for two different Reynolds 
numbers, R).. , based on the Taylor micro scale. It is seen 
that the areas grow exponentially as 

A(t) = A(O) exp [ 0.3 t/T1] ] ' (1) 

irrespective of the Reynolds number. Here, T1] denotes 
the Kolmogorov time, which is the minimum time scale 
of the Lagrangian motions in turbulence. The exponent 

d 
/,( t) = dt log A(t) (2) 

is called the stretching rate of material surface, and has 
been a main research target of this system. Before our 
simulation, it was 0.16T1] -1 that was a numerically es
tablished value of /' (see Ref.1). However, the slope 
read from Fig.2 is around 0.3T1] - 1, which is substantially 
larger than the above value. This difference can be un
derstood as follows. 

The conventional method to lead to the smaller value, 
0.16T1]' is based on the frequently used assumption by 
Batchelor 2), that is, the stretching rate , /" is equal to 
the arithmetic average of the stretching rates, "Y~i), of 
many infinitesimal surface elements. Since the area A of 
a material surface is the sum of bA (i) of surface elements 
(A = 2:i=l bA(i)), /' can be expressed in terms of /,~i) 
and bA(i.) as 

(( "Ye bA )) 
(( bA )) 

where (( . )) denotes the arithmetic average over the sur
face elements. This exact relation tells us that /' is 

not the arithmetic average of /,~i) with equi-weight , but 
the average with statistical weight proportional to bA (i) . 

Note that if the correlation between the weight bA(i) and 
the stretching rate /,~i ) decayed in time, /' would be equal 
to the arithmetic average. However, the correlation never 
vanish because of the explicit relationship, 

between them. Details of this point are described in 
Ref.3 from the mathematical viewpoint that the stretch
ing of material object is a multiplicative process. 

Fig.1 Deformed material surface in turbulence, which 
is fiat initially. R).. = 57. t = lOT?]. 
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Fig.2 Exponential stretching of material surface area. 
Solid curve: R).. = 57; dashed curve: 84. Two straight 
lines indicate slopes proportional to exp[0.3 tiT?]] and 
exp[0 .16 tIT1)]' 
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