§35. Possible Influence of t = 1 Surface on Te Pedestal Formation

Funaba, H., Ohyabu, N.

Í

In most of the magnetic configurations of LHD, the magnetic surface of i = 1 is located at the plasma edge region. For example, it exists at $\rho \simeq 0.9$ in the cases of the magnetic axis, $R_{ax} = 3.60$ m and $R_{ax} =$ 3.70 m, or at $\rho \simeq 1.0$ in the $R_{ax} = 3.90$ m case. Here, $\rho = (\Phi/\Phi_a)^{1/2}$ and Φ is the toroidal magnetic flux. Table 1 shows the plasma volumes and the positions of the i = 1 surface in some R_{ax} cases.

In the $T_{\rm e}$ profiles of LHD plasmas, the sharp $T_{\rm e}$ gradient (pedestal) normally appears at the edge region. Figure 1 shows the T_e and ϵ profile in the case of a hydrogen plasma of $R_{ax} = 3.60$ m. This \star profile is calculated for the configuration without any plasma. The location of the high ∇T_e region can be interpreted to be around i = 1 island. Some flattening in T_{e} profile in this figure can be seen around t = 1.0 and possibly 0.5 surfaces and it is caused by islands generated by an error field. In this profile, the gradient outside the $\epsilon = 1$ surface is larger than the gradient in the inside region by about 50%. In addition, during the expanding phase of low density NBI discharges, a pedestal appears in the core ($\rho \simeq 0.8$) while the i = 1 surface determines the boundary of the T_e profile (Fig.2). Moreover, we also found a steep T_{e} gradient just outside of the external imposed island (m/n = 1/1). Thus the m/n = 1/1 island or t = 1surface may play some role in formation of the temperature pedestal.

Figure 3 shows the electron temperature at the pedestal, $T_{e}^{\text{ped}}(\rho \simeq 0.9)$ for different configurations and fields. The average electron density and the NBI input power are fixed at $2.0 \times 10^{19} \,\mathrm{m}^{-3}$ and $3 \,\mathrm{MW}$ respectively. A fact of low T_e^{ped} at $R_{\text{ax}} = 3.9 \,\text{m}$ may be explained as follows. The i = 1 surface is located at $\rho \simeq 1$ and thus the gradient can exist only inside the i = 1 surface. The gradient inside the i = 1 surface appears to be weaker than that of outside. From the simplified transport relation, $n\chi\nabla T \simeq P_{\text{total}}/S$ and $T_{e}^{\text{ped}} \simeq 0.1a \nabla T \ (P_{\text{total}}: \text{ input power}, S: \text{ plasma})$ surface area, a: minor radius), $n\chi_{\rm ped} \, [{\rm m}^{-1}{\rm s}^{-1}] \simeq$ $4.2 \times 10^{18} \cdot P_{\text{total}}[\text{MW}]/T_{e}^{\text{ped}}[\text{keV}]$. For example, in the case of $R_{ax} = 3.60 \text{ m}$ and B = 2.5 T, the effective $n\chi_{\text{ped}}$ is estimated to be about $1.8 \times 10^{19} \,\mathrm{m}^{-1} \mathrm{s}^{-1}$. From this limited data set, we also found fairly weak B dependence of T_{e}^{ped} and $n\chi_{ped}$.

$R_{\rm ax}$ [m]	$V [\mathrm{m}^3]$	$\star = 1$ surface
3.60	29.3	$ ho\simeq 0.9$
3.70	27.5	$ ho\simeq 0.9$
3.75	25.6	$ ho\simeq 0.93$
3.90	21.5	$ ho\simeq 1.0$

Fig.1. T_e and ι profile ($R_{ax} = 3.60 \text{ m}, B = 2.75 \text{ T}$ H plasma)

 $(R_{\rm ax} = 3.60 \,{\rm m}, B = 2.50 \,{\rm T}, He \,{\rm plasma})$

Fig.3. T_e^{ped} in various magnetic configurations

39