§13. Progress in Potential Formation and Radial-Transport-Barrier Production for Turbulence Suppression and Improved Confinement in GAMMA 10

Cho, T., GAMMA 10 Group, Pastukhov, V.P.¹, 81 Collaborators from Japanese Universities and Institutes (Plasma Research Center, University of Tsukuba)

(¹Russian Research Center "Kurchatov Institute", Russia)

(1) Four-time progress in ion-confining potentials ϕ_c to 3.0 kV in comparison to ϕ_c attained 1992-2002 is achieved in the hot-ion mode (T_i=several keV) [Fig. 1]. A scaling of ϕ_c , which favorably increases with plug electron-cyclotron heating (ECH) powers (P_{PECH}), is obtained.¹⁾

(2) The advance in ϕ_c leads to a finding of remarkable effects of radially sheared electric fields (dE_r/dr) on turbulence suppression and transverse-loss reduction.²

(3) A weak decrease in ϕ_c with increasing n_c to ~10¹⁹ m⁻³ with the recovery of ϕ_c with increasing P_{PECH} is obtained.¹⁾

(4) The first achievement of active control and formation of an internal transport barrier (ITB) has been carried out with the improvement of transverse energy confinement [Fig. 2]. Off-axis ECH in an axisymmetric barrier mirror produces a cylindrical layer with energetic electrons, which flow through the central cell and into the end region. The layer, which produces a localized bumped ambipolar potential Φ_c , generates a strong E_r shear and peaked vorticity with the direction reversal of $E_r \times B$ sheared flow near the Φ_c peak. Intermittent vortex-like turbulent structures near the layer are suppressed in the central cell. This results in T_e and T_i rises surrounded by the layer. The phenomena are analogous to those in tokamaks with ITB.³⁾

(5) Preliminary central ECH (170 kW, 20 ms) in a standard tandem-mirror operation raises T_{e0} from 70 to 300 eV together with $T_{i\perp0}$ from 4.5 to 6.1 keV, and $T_{i//0}$ from 0.5 to 1.2 keV with τ_{p0} =95 ms for ϕ_c (=1.4 kV) trapped ions. The on-axis particle to energy confining ratio of τ_{p0}/τ_{E0} is observed to be 1.7 for ϕ_c trapped ions (consistent with Pastukhov's theory) and 2.4 for central mirror-trapped ions with 240-kW plug ECH and 90-kW ICH (η_{ICH} ~0.3; nl_c =4.5×10¹⁷m⁻²).¹

(6) Recently, a 200 kW central ECH with 430 kW plug ECH produces stable central-cell plasmas ($T_e=600 \text{ eV}$ and $T_i=6.6 \text{ keV}$) with azimuthal $E_r \times B$ sheared flow. However, in the absence of the shear flow, hot plasmas migrate unstably towards vacuum wall with plasma degradation.¹⁾

References

- Cho, T. *et al.* Plenary Invited Talk in the 5th International Conference on Open Magnetic Systems for Plasma Confinement (Tsukuba, July 2006). [*To be published in the American Nuclear Society Journal of Trans. Fusion Sci. Tech.*]
- 2) Cho, T. et al. Phys. Rev. Lett. 94 (2005) 085002.
- 3) Cho, T. et al. Phys. Rev. Lett. 97, No.5 (2006).

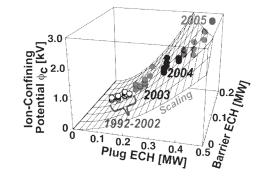


Fig. 1. Four-time progress in ϕ_c including a new record of 3.0 kV for confining central-cell ions (filled symbols) [see ϕ_c during 1992-2002 (open circles)] in accordance with a favorably rising scaling surface of ϕ_c with plug (P_{PECH}) and barrier (P_{BECH}) ECH powers. T_i =several keV (the hot-ion mode).

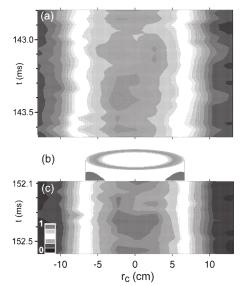


Fig. 2. Contours of central-cell x-ray brightness in (a) the absence and (c) presence of (b) cylindrically shaped energetic-electron-layer formation due to off-axis barrier-cell ECH. The hot-colored core region displays higher plasma-pressure locations. Strong turbulence with vortex-like structures continues to exist at r_c <4 cm in (a) and (c). However, a quietly suppressed region in (c) is observed in the energetic-electron layer [5< r_c <7 cm; see (b)] and the outer surrounding cylindrical layer (7≤ r_c <10 cm); ($I \propto n_e n_i T_e^{2.3}$).