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Recently, neoclassical transport in the core region of 
tokamaks again attracts much attention. It is well
known that there appear non-standard guiding-center 
orbits near the magnetic axis called "potato" orbits[l]. 
Typical orbit width of potato particles is as large as 
(q2 p2 RO)1/3, where q is the safety factor, p is the Larmor 
radius, and Ro is the major radius, respectively. The 
standard neoclassical transport theory[2,3] constructed 
in the small-orb it-width (SOW) approximation is not 
applicable to the near-axis region, and the orbital prop
erties of potato particles should be considered in ana
lyzing transport in this region. 

Neoclassical transport theory has usually been dis
cussed in Eulerian representation. However, to in
clude orbital properties in the transport theory, La
grangian formulation[4] was found to be suitable for a 
collision less (banana-regime) plasma. In this approach, 
transport phenomena are described by a reduced drift
kinetic equation in the space of three constants-of
motion (COM) along a collisionless particle orbit in a 
tokamak. 

We apply for the first time Lagrangian formulation 
to the near-axis region[5] in which the finite-orbit-width 
(FOW) effect becomes really important. To utilize La
grangian transport theory, we improve the treatment 
of like-particle collision term by adding a momentum
restoring term to a simple Lorentz operator. This trans
port theory reflects quantitatively the properties of all 
types of particles appearing near the magnetic axis. 

The Lagrangian formulation is derived from the drift 
kinetic equation in an Eulerian representation in the 
(x, E, fL) space, 

a . afa ( ) 
atfa(x, E, fL, t) + X· ax = Cab, 1 

where' = d/dt, x is the guiding-center position and Cab 
is a collision operator. The independent variables in eq. 
(1) are transformed into three constants of motion in 
the collisionless limit (Zl,Z2,Z3) = (E,fL, (1jJ)), and the 
other three variables (Z4, zs, Z6). Here, E is the energy 
of a particle, fL is the magnetic momentun, and (1jJ) rep
resents the averaged radial position of a particle orbit. 
The orbit average operator for any function a(z, z) is 
defined as 

(a) == -+- f d~ d(d¢ a(z, z), (2) 
47r Tp () 

where 

(3) 

is the poloidal period of an particle orbit. Note that we 
can use Z3 = (r) instead of (1jJ) when it is convenient. By 

using the set of variables (z, z), eq. (1) is transformed 
into 

a .afa 
atfa(Z, (), t) + () a() = Cab, (4) 

where the property a / a¢ = a / a( = 0 is used. 
In the collisionless regime, averaging both sides of eq. 

(4) yields the reduced drift-kinetic equation in the COM 
space, 

al = ~~ . (Jc / az . r(/))) = C, (5) 
at Jc az \ av 

where f = f(E, fL, (1jJ), t) and Jc is Jacobian. 
Equation (5) is expanded in 6b = D..b/ L « 1 and 

then solved order by order. Here, D..b and L are typical 
potato width and typical gradient scale, respectively. By 
taking moments of O(6~) part of eq. (5) with E and fL, 
one obtains the particle and heat flux equations, 

(6) 

(7) 

where 

[ ~ ] = [ t: 
These equations are in the comparable form to those of 
standard Eulerian representation. The difference arose 
by using (1jJ) instead of 1jJ can be seen to be factorized 
by An and Aq . These factors tend to be unity away from 
the axis and go infinity as (1jJ) --t O. We also emphasize 
that the transport coefficients Ajk , though we do not 
have enough space to write the definitions here, have 
a convenient form to calculate numerically. Then, by 
using Lagrangian formulation, we can evaluate neoclas
sical transport coefficients near the axis, with including 
the effect of potato orbits. 
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